
Fes USAISEC
US Army Information Systems Engineering Command

roo Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES
(AIRMICS)

POTENTIAL APLICATIONS OF
ARTIFICIAL INTELLIGENCE

TO THE FIELD OF
o SOFTWARE ENGINEERING

(.0 ASQBG-I-89-003

October, 1988

IDTIC

ELECTE

JAN I19

AIR1VICS

115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

.-..... 90 01 17 029

VINCIA II f

e I'TrIt" I ', l:l WIt I' rlepI

Form Approved
REPORT DOCUMENTATION PAGE oMB No- 0704--188

Exp. Date: lull 30. 1986
)a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

N/A
2b. DECLASSIFICATION / DOUWNGRADING SCHEDULE N/A

N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Nnte/ligen Systems Group, Data Systems ReseaA (if applicable) NA
0akridge National Labs____A

6c. ADDRESS (City. Sta:.- ;-d ZIP Code) 7b. ADDRESS (City. State, and Zip Code)
Oakridge, TN 1t783-6100N/

N/A

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

U.S. Army Institute for Research in Mgmt. iaplia Interagency Agreement DOE No. 1662-1662-Al
Information, Communications & Computer Sc. ASBG-I

8c. ADDRESS (City. State, and ZIP Code) Zi SO RC OF UNNITlN f R

115 O'Keefe Bldg., PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.

Atlanta, GA 30332-0800 DY1O-02 05 01
II. TITLE (Include Security Classification)

Potential Applications of Artificial Intelligence to the Field of Software Engineering (UNCLASSIFIED)

12 PERSONAL AUTHOR(S)

Emrich, M.; Agarwal, A.; Jairam, B; Murthy, N.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

FINAL 87/02 87/12 88-03-13 144
FROM _ TO

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse it necessary and identify by block number)

FIELD GROUP SUB-GROUP Artificial Intelligence, Software Engineering, Knowledge-based Systems, Knowledge
based programming tools.

19. A STRACT (Continue on reverse if necessary and identity by block number)
--)hhe software crisis initiated a major change in the perspective of software engineering. While conventional
methodologies may have met software development requirements a decade ago, the present scale of programming has
made automation of the development process imperative. Recent research has focused on the application of artificial
intelligence (AT) techniques to software engineering. The ultimate goal is the automation of the entire software devel-
opment life cycle.

An overview of the software development life cycle is presented. The feasibility of incorporating Al methods for
automating the traditional and prototyping approaches to software development is explored. A number of current re-
search projects which apply Al to software engineering tasks, including a knowledge-based software project manager
are discussed. Future research directions are highlighted. (y.-'K

20 DISTRIBUTION / AVAIlABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED / UNLIMITED Q SAME AS RPT, DTIC USERS UNCLASSIFIED

2a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMAO.

Major Georpe E. Thurmond H (404) 8 94-3110 ASBG - I
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SEIIIITY ;EASlI;:CATIcN OF lll'A(E

All other editions are obsolete UNCLASSIFIED

This work was done under Interagency Agreement DOE number 1662-1662-Al for the United States
Army Institute for Research in Management Informatinn, Communications, and Computer Sciences
(AIRMICS), the RDTE organization of the United States Army Information Systems Engineering ('om-
mand (USAISEC). This report is not to be construed as an official Army position, unless so designated
by other authorized documents. rhe material included herein is approved for public release, distribution
unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED.

"Ir~

s/ s/ -- s!.

Glenn E. Racine, Chief John R. Mitchell
Computer and Information Systems Division Director, AIRMICS

i Aoosio lo

K IS
GRt kl

DTIC TAB
Mnnuswog 0

Just itieat io

D-strt mt /
Availability Coesl

Avi and/o

POTENTIAL APPLICATIONS OF ARTIFICIAL INTELLIGENCE

TO THE FIELD OF SOFTWARE ENGINEERING

M. Emrich, A. Agarwal, B. Jairam, N. Murthy

Intelligent Systems Group
Data Systems Research and Development Program

Oak Ridge Reservation
Oak Ridge, TN 37831-6100

Martin Marietta Energy Systems, Inc
for the

U.S. Dept. of Energy
Under Contract No. DE-ACOS-84OR21400

Prepared for

U. S. ARMY INSTITUTE FOR RESEARCH IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND Ctj!,-'ln'JTER SCIENCES
(AIRMICS)

under Interagency Agreement DOE No. 1662-1662-Al

October, 1988

TABLE OF CONTENTS

Page No.

ABSTRACT vii

ACKNOWLEDGEMENTS ix

1. INTRODUCTION 1

2. OVERVIEW OF THE TRADITIONAL SOFTWARE DEVELOPMENT
LIFE CYCLE 9

2.1 REQUIREMENTS PHASE 9

2.2 SPECIFICATIONS PHASE 9

2.3 DESIGN PHASE 11

2.4 CODING PHASE 11

2.5 IMPLEMENTATION AND VERIFICATION PHASE 12

2.6 MAINTENANCE PHASE 12

2.7 DISADVANTAGES OF THE TRADITIONAL APPROACH . . 12

2.7.1 Error Correction 13
2.7.2 Missed Deadlines 13
2.7.3 Elimination of Alternatives 13
2.7.4 Redundancy 13

3. OVERVIEW OF PROTOTYPING APPROACH TO SOFTWARE
DEVELOPMENT 15

3.1 ADVANTAGES OF PROTOTYPING 17

3.1.1 Reduced Specification
and Design Errors 17

3.1.2 Reduced Time Required to
Produce Systems 17

3.1.3 Increased User Satisfaction 17
3.1.4 Increased Design options 18

3.2 RESOURCES ASSOCIATED WITH PROTOTYPING 18

3.2.1 On-line Interactive Systems 18
3.2.2 Fourth Generation Languages 18
3.2.3 Generalized Software 19

iii

,= .Emnm Onm On ieIIi n

TABLE OF CONTENTS (cont.)

3.3 COMPARISON OF RESOURCES NEEDED FOR THE
TWO METHODOLOGIES 19

3.3.1 Development Cost and Time 19
3.3.2 Resource Cost 20
3.3.3 Opportunity Cost 20
3.3.4 Operating Cost 20
3.3.5 Maintenance Cost 21

3.4 CIRCUMSTANCES WHICH MAKE PROTOTYPING
INEFFICIENT 21

3.4.1 Well-Defined Goals 21
3.4.2 Limited User Time 21
3.4.3 High Resource Acquisition

Cost 21

4. AI AND SOFTWARE ENGINEERING 23

5. AI/SOFTWARE ENGINEERING CROSSOVER 27

6. KNOWLEDGE-BASED SOFTWARE ASSISTANT (KBSA) 29

7. PROGRAMMER'S APPRENTICE (PA) 31

8. KNOWLEDGE BASED PROGRAMMING ASSISTANT (KBPA) . . . 33

9. GLITTER 35

10. SOFTWARE MANAGER APPRENTICE 37

10.1 RELEVANT RESEARCH 37

10.2 CURRENT EFFORT 38

10.3 SOFTMAN SYSTEM 41

10.3.1 Modules 1 and 2 43
10.3.2 Module 3 44

10.4 CURRENT STATUS 44

10.5 ENHANCEMENTS 46

11. DISCUSSION 51

12. REFERENCES 53

iv

TABLE OF CONTENTS (conit.)

Pagie No.

13. ANNOTATED BIBLIOGRAPHY.................59

13.1 GENERAL.....................59

13.2 PROTOTYPING...................72

APPENDIX A: SOFTMAN SCREENS...............75

APPENDIX B: SAMPLE CONSULTATION.............109

APPENDIX C: GLOSSARY OF RELEVANT TERMS..........139

V

LIST OF FIGURES

Figure 1. Traditional Approach to software
Development 10

Figure 2. Prototypical Approach to Software
Development 16

Figure 3. Sample SOFTHAN Rules...... 39

Figure 4. Sample SOFTMAN Frame 40

Figure 5. SOFTNAN Structure................42

LIST OF TABLES

Table 1. Al/Software Engineering Systems: Status .. 3

Table 2. Al/Software Engineering Systems: Functions . 6

vi

ABSTRACT

The software crisis initiated a major change in the
perspective of software engineering. While conventional
methodologies may have met software development requirements a
decade aqo, the present scale of programming has made automation
of the development process imperative. Recent research focusses
on the application of artificial intelligence (AI) techniques to
software engineering. The ultimate goal is the automation of the
entire software development life cycle.

An overview of the software development life cycle is
presented. The feasibility of incorporating AI methods for
automating the traditional and prototyping approaches to software
development is explored. A number of current research projects
which apply AI to software engineering tasks, including a
knowledge-based software project manager, are discussed. Future
research areas are highlighted.

vii

ACKNOWLEDGEMENTS

The authors acknowledge the information assistance provided
by Dr. Charles Rich of the Massachusetts Institute of Technology;
Dr. Mehdi Harandi of the University of Illinois, Urbana; Dr.
Stephen Fickas of the University of Oregon, Eugene; and Dr.
Cordell Green of the Kestrel Institute, Palo Alto, California.
Special thanks are also due to Drs. Rich and Harandi for their
participation in a briefing at Ft. Belvoir, Virginia. The
authors acknowledge assistance from the Central Research Library
Staff, especially Judith Booth, Opal Russell, and Kendra Albright
Jones for reference support. Additionally, appreciation goes to
Julie Williams, Andrew M. Rochat, and Teresa Ladd for
administrative and clerical support.

ix

1. INTRODUCTION

Software engineering has emerged as an important area in

computer science. It focusses on the development and

implementation of large software systems (Zelkowitz, 1S79). The

field seeks to systematize and formalize the various activities

involved in the science of programming and systems development.

In the early seventies, the need for such formalization arose

when conventional development methods failed to adequately meet

the challenges posed by system design. This period was

characterized by tremendous improvements in hardware technology.

As a result of these advances, computer systems with high power

and large capacity became feasible. Such systems led to the need

for very large and extremely complex programming tasks. This

phenomenon is designated as the software crisis (Sommerville,

1985).

While software engineering has developed into a practical

methodology to overcome the software crisis, another important

area in computer science that has emerged is artificial

intelligence (AI). Although it is not the intent of this paper

to precisely and formally define AI, its general meaning can be

intuitively described as the science of making computers

"intelligent." Intelligent in the sense that they are capable of

performing actions that they have not been explicitly programmed

to do (Barr, 1981; Barr, 1982). An illustrative case is the

ability to reason and infer based on incomplete knowledge and to

evaluate alternatives using heuristics. Machines that can

"learn" based upon their past experiences can also be included in

this category.

The investigation presented in this report emphasizes

integrating the two fields for achieving software development

automation. The ultimate goal of this integration is to develop

systems that generate reliable machine executable programs

starting with the requirements definition phase (Partridge,

1986). Although considerable progress remains to be made before

this goal is attained, current research has succeeded in

automating some aspects of the software development life cycle

(SDLC).

Several current research projects attempt to automate the

various SDLC stages (Table 1). Some address more than one stage.

The Knowledge Based Software Assistant (KBSA) project at the Rome

Air Development Center (KBSA, 1987) is an attempt to develop a

comprehensive, intelligent software development environment. The

Programmer's Apprentice (PA) project at the Massachusetts

Institute of Technology focusses on developing an intelligent

system that emulates a human assistant. The ultimate objective

is to continually gather problem-solving heuristics uzutil the

system approximates the expert's knowledge. The GLITTER project

at the University of Oregon, Eugene seeks to formalize and

automate the specifications process. The Knowledge Based

Programming Assistant (KBPA) project at the University of

2

a) a
'4 ~4.4 a

co -~

a. ' >)0 bO

0) 0

0 0

U)~~ .4a 4. w~- * a:s . ~

0 0.. 02O)~-

4 bO 0 -

0* 914 t 0

0
6

a)

Qn

44 0k)
0

0 0

V) a

0 0 0

'44n

~3

10

"0 IA. >

60 0
0 4

a 0 o 6- __

4) w C

0 , - -"

94.- 0 0o

ed a 0

w 4
bu4,a 0 bo cc

w 00

0.*5; o *- l l .

10 00 E

0 o

V4

anS

Illinois, Urbana focusses on developing an intelligent design,

coding, testing, and debugging tool.

Table 2 lists several other projects that attempt to

automate the various stages of the SDLC. While most of these

focus on activities such as requirements analysis,

specifications, design, and code generation, the effort has not

been toward applying AI techniques for improving rapid

prototyping. Rapid prototyping is an iterative process of

developing programs from incomplete specifications. Since AI

involves solutions to problems with incomplete knowledge, it can

be useful for this purpose.

Another important aspect of the integration is automated

software management support. Efforts like Time Line

(Breakthrough Software Corporation, Novato, California) and

Harvard Project Manager (Software Publishing Corporation,

Mountain View, California) were not knowledge-based. In

addition, little work has been done in software management using

metric-based measurements.

Metric-based software measurement is a branch of software

management which uses past performance to make predictions about

current projects. Early research in metrics was nearly abandoned

since the results obtained from metrics were sometimes

controversial and substantially different from actuals. Another

reason for the lack of interest was the difficulty in collecting

data for the metrics. However, in recent years, software quality

has become increasingly important. This has led to the revival

5

00

0 -b . o

00

o CA 8

-00

.0310

04

0o 0
0C

0
I4)

00

1..

iz 0

06 0

bO __

.0

44

0 0

of metrics measures. Research has generated reliable metrics

which can be used as project management guidelines. In addition,

developments in hardware and software have made it easier to

automatically collect metrics data (e.g., run time and source

lines of code). A project is underway to develop a

knowledge-based system, SOFTMAN Apprentice, for performing

automated project management. The system derives its basic

concept from metrics research performed at the University of

Maryland (Basili, 1985).

8

2. OVERVIEW OF THE TRADITIONAL DEVELOPMENT LIFE CYCLE

An important concept in software engineering is that of the

SDLC. As the name implies, it describes the process of

developing a software system from conception through

implementation and maintenance (Birrell, 1985). This process

proceeds through several stages (Beregi, 1984), during which the

system is successively transformed from high-level, natural

language specifications to machine executable code (Figure 1).

2.1 REQUIREMENTS PHASE

The first stage in the SDLC is requirements analysis. In

this phase, system analysts work to understand the existing

software and hardware environment of the user. The user provides

the problem description and specification to the analysts. The

analysts identify potential solutions to any problems and rank

them in order of certain parameters (e.g., cost and performance).

Finally, they define the problem in terms of its functions and

constraints. An acceptable solution to the problem and a

statement of resources are determined. A document is written

communicating requirements to the development team.

2.2 SPECIFICATIONS PHASE

From user specifications, software developers produce the

architectural specifications. This framework identifies the

interfaces and interrelationships between various system

components, as well as the data flow between the components.

9

PHASES:

(1) REQUIDMT

(2) ISPEW0701O

(3) DESIGN

(4) CODING

(5) WLWuMMV

(6)

Figure 1. Traditional Approach to Software Development

10

Internal details of components are deferred to a later stage.

The specifications are expressed in formal or semi-formal

language. In addition, flowcharts or diagrams (e.g., IIIPO

charts) which pictorially depict the relationships between

components may be developed. One statement at this level may

expand to approximately one hundred lines of code.

2.3 DESIGN PHASE

It is in this phase that internal details of components are

written using pseudo-code, flowcharts, decision tables, etc. One

statement may expand to fifteen lines of code in the final

product. Design defects are removed by manual inspections;

undetected errors usually will not surface until the testing

phase.

2.4 CODING PHASE

The algorithms for how the computer will solve the problem

are developed during the design phase. After the design of the

system is complete, coding begins. Herein, the abstract design

is transformed via a programming language (e.g., PL/I, COBOL, and

Pascal) into a compilable program.

Coding is followed by system testing which essentially

consists of activities such as verification and validation.

During verification, the correctness of the system is checked.

Validation is the process of checking whether the system performs

its intended duties and solves its intended problem. In other

words, validation seeks to prove the system's correspondence

11

(Blum, 1986). The subtle point to be noted is that while a

program might be correct (i.e., true to its specifications), it

might not be the solution that is sought if the original

specifications were wrong.

2.5 IMPLEMENTATION AND VERIFICATION PHASE

Programmers code individual modules in high-level languages

and test each module. These modules are then integrated, and

tested for performance, functionality, and reliability. Design

errors not detected until this stage may cost as much as 75-80%

more to correct (Martin, 1985).

2.6 MAINTENANCE PHASE

This phase coexists with the usage of the software product.

It begins when the product goes on-line and involves correction

of errors detected during product usage. Such modifications may

involve major changes in the software which could be expensive in

terms of time and money. The maintenance phase constitutes about

60-80% of the software life cycle (Sommerville, 1985; Spies,

1983).

2.7 DISADVANTAGES OF THE TRADITIONAL APPROACH

The traditional method suffers from various shortcomings

when used for large scale software development. Errors may be

costly to detect and correct. Due to the length of time between

specification and implementation phases, deadlines may be missed.

Exploration of alternative designs are not feasible. In

addition, most existing reusable code is not utilized.

12

2.7.1 Error Correction

It may not be possible for the user to precisely define the

product's operational requirements during the requirements phase.

While operational parameters like performance and ease-of-use are

more readily detected after the product has been implemented,

specification inconsistencies are hard to detect. However, since

they are identified late in the SDLC, such errors may lead to

considerable changes in the original design itself.

2.7.2 Missed Deadlines

In large software projects, the intervening period between

the requirements and verification phases is so long that product

specifications often change by the time the product is

implemented. Users may be dissatisfied with the final product.

Changes are required to make the software acceptable to users.

This can be time-consuming and expensive, resulting in missed

deadlines.

2.7.3 Elimination of Alternatives

Since it is rather expensive to build a working model in

this approach, neither users nor developers can explore the

effects of alternative designs on system performance. Hence, the

design may not be an optimal one. However, it is important to

have inexpensive, throw-away models for examining these aspects.

2.7.4 Redundancy

The traditional approach does not take advantage of existing

generalized software. Such software is usually available for the

maintenance of databases, security, and data integrity (Naumann,

13

1982). These utilities are often rewritten explicitly for the

user in the traditional approach. The same is true of various

generalized input-output software.

The traditional approach to software development entails

many modifications to the software. If user specifications are

poorly defined, this process becomes inefficient. An approach

which combines lengthy and sequential SDLC stages into a single,

short activity would be more effective. The prototyping approach

seeks to achieve this goal.

14

3. OVERVIEW OF THE PROTOTYPING APPROACH TO SOFTWARE DEVELOPMENT

Section 2 presented a short overview of the traditional

approach to software engineering. An alternative to the

"waterfall" methodology is rapid prototyping. A prototype is a

working model which is built cheaply and quickly to test the

validity of initial specifications and requirements. The user

checks the product after every refinement to verify expectations

and uncover inconsistencies (e.g., ease-of-use). The product is

modified iteratively until it becomes acceptable to the user

(Lipp, 1986).

Prototyping does require some initial resources (e.g.,

fourth generation languages) to enable fast development. The

approach implicitly assumes that because human resources are most

expensive, they are the most important. Therefore, one must risk

other resources (e.g., hardware) prior to product development

(Gremillion, 1983).

The basic motivation behind this approach is the observation

that when a system is developed, the initial specifications are

rarely complete and correct. The result is that the shortcomings

of the system become apparent only after it has been developed;

therefore, the design either needs to be modified or

restructured. However, through prototyping an elementary design

is quickly developed and implemented. Therefore, if a design is

inadequate or faulty, it can be discarded and a new one

developed. This process is iterated until all requirements of

the system are met (Figure 2).

15

PROTOTYPE

USER
FEEDBACK

AFTERANC

N ITERA11ONS

MAIMAC

Figure 2. Prototypical Approach to Software Development

16

3.1 ADVANTAGES OF PROTOTYPING

3.1.1 Reduced Specification and Desian Errors

Since this approach involves continuous interaction between

the user and the developer, prototyping reduces specification

errors. Because the first version of the product is available

during early development (e.g., typically in days or weeks),

design errors can be addressed quickly. Consequently, the final

product has fewer inconsistencies when compared to the

traditional approach.

3.1.2 Reduced Time Reauired to Produce Systems

Software is rarely rewritten; existing tools (e.g.

databases, auery languages, and report generators) are used.

Often, the product is built using a fourth generation language

which relieves the user of data representation and procedural

details. Since errors are discovered quickly, less time is spent

correcting them. For example, John Deere reports that

inexperienced programmers could rewrite existing COBOL programs

using IBM's ADF (Application Development facility). A

productivity twice that of the COBOL team was achieved (Haltz,

1980).

3.1.3 Increased User Satisfaction

The traditional approach usually does not involve the end

user until the implementation phase. This disassociates the user

from much of the software development process. However, rapid

prototyping involves the user early in the development process.

The user and developer participate in various sessions, thereby,

17

enabling the development of a close rapport. Appleton (1973)

exemplifies prototyping in a functional applications system which

was initially developed using the traditional life-cycle

approach. The system was redeveloped using prototyping. It was

reported that the new product eliminated user dissatisfaction and

responded better to the users' dynamic environment.

3.1.4 Increased Design Options

For most systems, one particular solution cannot be

designated as the best. In the traditional development method,

the goal is to produce a feasible system the first time.

Conversely, that may not be possible in a single-pass approach.

However, in the prototyping method, when a trial-and-error

approach is used, designs can be iteratively produced and

discarded until an optimal solution is found.

3.2 RESOURCES ASSOCIATED WITH PROTOTYPING

3.2.1 On-line Interactive Systems

The philosophy behind the prototyping approach is to develop

systems rapidly. Batch systems are not suitable for this

purpose. However, on-line interactive systems are able to

respond more rapidly to user needs.

3.2.2 Fourth Generation Languages

Fourth generation languages, also known as VHLL's (yery

ffigh-Level Languages), are program development tools which

relieve the user of the data representation and procedural

details of conventional languages (e.g., COBOL and PL/1). Fourth

generation languages are primarily interpretive with features of

18

high-level coding incorporated. Such capabilities decrease

applications development time. For example, a benchmark version

of a management report system was developed at Heublein, Inc.

Using COBOL, the effort required six months. The same program

was crcted in half a day with Information Builders' fourth

generation package, FOCUS (McCracken, 1980).

3.2.3 Generalized Software

Generalized software provides database creation and update

capabilities without the deve"opment of complex programs.

Various packages are available for editing the database and

producing reports. In addition, security features are inherent

in such software. The burden of programming details, not

directly related to the project, is shifted from the programmer.

3.3 COMPARISON OF RESOURCES NEEDED FOR THE TWO METHODOLOGIES

3.3.1 Development Cost and Time

Evidence suggests that both the development cost and time in

the prototyping approach are significantly less than that

required in the traditional approach (Naumann, 1982). Scott

(1978) describes a system that was estimated to cost $350,000;

however, using the prototyping approach, its development costs

totalled $35,000. In addition, other researchers (Read, 1981;

Mason, 1982) report productivity gains with reduction in human

resources.

19

Mason (1982) describes a rapid prototyping tool called

ACT/i. This tool provides specifications using scenarios which

are essentially user-system dialogues. These prototypes are

translated by ACT/i for production use.

3.3.2 Resource Cost

When high-level tools are involved, considerable resource

acquisition costs may be associated with the prototyping

approach. Since the cost is only for the initial installation,

it may not be a major cost component if distributed over many

projects. The traditional approach does not involve this cost

factor.

3.3.3 ODDortunity Cost

Opportunity cost must be taken into account when comparing

the two development approaches. The prototyping approach

produces a working system much faster. In the traditional

method, the system is not available for a long period (i.e., from

the start to completion). Therefore, there is an opportunity

cost associated with the delayed availability of the product.

3.3.4 Operating Cost

Costs are involved during system operation. For example,

generalized software may produce inefficient code with increased

run-time. If coding in the traditional method were by expert

programmers, operating costs may be higher for systems developed

using the prototype model. However, because software teams

routinely do not utilize expert programmers, the operating cost

for the prototyping approach may not be significantly different.

20

3.3.5 Maintenance Cost

Maintenance costs are largely due to the various design and

specification errors discovered after the product is in

operation. With the prototyping approach, errors are more likely

to be discovered early in the development process. Because

changes are made early and at a higher level, this results in a

lower maintenance cost for prototyped systems.

3.4 CIRCUMSTANCES WHICH MAKE PROTOTYPING INEFFICIENT

3.4.1 Well-Defined Goals

Some projects may have well-defined, stringent requirements.

It may be possible to accurately define the specifications before

the product is developed. In such situations, it is appropriate

to develop the product using the traditional approach. This may

also result in more efficient code in a lower-level language.

3.4.2 Limited User Time

An underlying assumption in the prototyping method is

availability of user time. This may not always be possible or

convenient. In such situations, prototyping may not offer any

significant advantage over the traditional method.

3.4.3 High Resource Acquisition Cost

Initial resource costs are usually high for prototyping

(e.g., fourth generation languages and generalized software).

These costs are not cumulative; they form a minor fraction of the

development cost if amortized over several projects. However,

resource costs may increase on a per-project basis if fewer

projects share the initial resource acquisition costs.

21

Due to its inherent development methodology, prototyping

yields several benefits which cannot be envisioned within the

traditional model framework. Disadvantages of prototyping

related to inefficient code can be overcome by developing throw-

away prototypes. Such prototypes are used to incrementally

capture specifications. Al techniques can be used effectively to

build throw-away prototypes from incomplete specifications.

22

4. AI AND SOFTWARE ENGINEERING

One solution suggested for the software crisis is the

development of software using AI techniques. Advantages of such

an approach are greater formalism and increased abstraction in

the entities and operations involved. This can be seen as an

intermediate step in developing methods that would allow

increased automation of software development activities. One

goal is to achieve higher programmer productivity.

The process of software development is an activity that is

inherently susceptible to errors. Errors can occur at all phases

of the SDLC. Their effects are amplified because they cascade.

Errors in requirements analysis can lead to errors in

specifications which, in turn, can lead to a faulty design, etc.

On the other hand, even if the specifications are correct, it is

possible for faulty code to be developed during the coding phase.

Therefore, a program being erroneous either logically or

syntactically, or both, is not an unusual phenomenon. Several

means have been suggested and tried for proving software

correctness (e.g., mathematical proofs, validation through

metrics collection and analysis, and error seeding). However,

none guarantee a completely bug-free and reliable program.

Application of AI to software engineering tasks can provide a

means of testing and verifying the correctness of programs.

23

Specification languages (e.g., the VHLL in the REFINE

environment, GIST, and RML) can express software requirements in

executable form. They can be enhanced incrementally (e.g., at

each stage the new specifications are executable). In addition,

maintenance can be effected by changing system specifications

rather than applying patches to the source code (Goldberg, 1986).

With maintenance tasks requiring up to 80% of the software

development costs (Martin, 1983), this could result in a

substantial savings.

Rapid prototyping has been strongly advocated as an

alternative to the traditional software development method. In

one research effort by Tavendale (1985), a prototype is developed

from initial specifications and iteratively refined before the

formal design phase begins. The prototype is generated in Prolog

directly from the specifications. In this manner, an operational

model can be used to verify initial specifications before system

development proceeds. In other work, Fischer (1984) reports a

rapid prototyping approach which focussed on supporting both

specification and implementation stages of the SDLC.

Although the idea of rapid prototyping is not new, the

feasibility of its practical implementation is fairly limited in

the conventional software development environment. Whereas

fourth generation languages lend themselves to prototyping, some

authors advocate the use of AI techniques (AI, 1984; Wess, 1984).

AI involves solutions to problems, knowledge about which is not

complete prior to implementation. This knowledge may be the

24

specification of the problem or the data sets needed to reach the

solution (Loomis, 1986). The inference engine of an AI system

incorporates the search and reasoning methods to address such

situations. It uses existing knowledge to develop partial

solutions which may be further used to expand the knowledge base,

thereby, reducing the abstraction level of the specifications.

Rapid prototyping involves incremental development of user

programs based on incomplete user specifications. Such programs

must be flexible enough to be changed. Therefore, AI methods can

be used to prototype systems whose specifications and data are

initially ill defined. The inference engine saves the programmer

the burden of creating the detailed architecture for building

such a program. Since it is independent of the prototype that it

generates, the same inference engine can be used to develop

different pkototypes. AI methods also permit knowledge base

tracing to locate incorrect specifications and to provide system

documentation. With the use of AI, rapid prototyping becomes

feasible as a practical system development methodology.

Utilizing AI techniques, human expertise can be captured in

a "corporate memory" knowledge base. Such expertise can be made

more readily available for use by company personnel.

Additionally, the risk of losing information and knowledge when a

person leaves the organization is reduced.

25

5. AI/SOFTWARE ENGINEERING CROSSOVER

The major areas into which AI applications can be divided

include: robotics, computer vision, voice/speech recognition,

machine learning, natural language processing, and expert (i.e.,

knowledge-based) systems (Mishkoff, 1985). The crossover between

software engineering and the first area, robotics, is quite an

unlikely prospect. However, computer vision research holds

promise of software engineering (e.g., software design using flow

charts and data flow diagrams) utilizing the concepts of machine

vision and pattern recognition. In addition, voice and speech

recognition can contribute extensively as an input medium for

specifications and design implementations. Currently, little

research is being conducted in these areas although such efforts

could become more feasible as the technology develops.

The last two areas mentioned are the most promising for

AI/software engineering interaction. Natural language processing

is an area of active research (Schank, 1984). Easy-to-use front

ends to expert systems that carry out software engineering tasks

are the focus. One area where this is being applied is in the

specifications phase. Natural language processors are used to

gather the specifications and transform them into formal or semi-

formal representations (Harandi, 1988). These can be further

processed by automated programming tools (e.g., code generators).

27

The area that provides the widest scope for interaction

between AI and software engineering is expert systems. As

previously stated, the long-term objective of introducing AI into

software engineering is to automate the SDLC. Currently, expert

systems have been developed that perform requirements and

specifications analysis, code generation, testing, documentation,

etc. The following sections present major research efforts in

these areas.

28

6. KNOWLEDGE-BASED SOFTWARE ASSISTANT (KBSA)

The KBSA project is a long-term effort being undertaken by

the Rome Air Development Center (RADC) to provide an automated

software development environment (Benner, 1987). The essential

difference between the current software engineering paradigm and

the one proposed by KBSA is that KBSA imposes more formalism on

every SDLC activity. It gathers the evolutionary history of the

system from conception to implementation. Therefore, it is able

to provide a complete scenario of the implementation strategy,

the decision making that went into a system, the rationale behind

the decisions, the interfaces between the various units of the

system, and the constraints imposed.

KBSA is characterized by the following features: a wide

spectrum VHLL; an incremental, executable, and formal

specification mechanism; a formal implementation scheme capable

of validating and evaluating design decisions; and a maintenance

facility at the specification level. In KBSA, implementation

starts with a high-level abstract specification and proceeds

through a series of correctness preserving transformations. KBSA

can be perceived as an integrated system composed of a framework

(Huseth, 1987) and the following five facets: Project Management

Assistant (Jullig, 1986) which performs project definition,

project monitoring, and user interface; Requirements Assistant

(Harris, 1987) which deals with the informal user requirements;

Specifications Assistant (Johnson, 1987) which formalizes

requirements, validates them against user intentions and makes

29

them executable, and also provides a natural language front-end

paraphraser; Performance Assistant (Goldberg, 1987) which does a

performance analysis on the design decisions and evaluates them

at all levels of the SDLC; and Development Assistant which

derives an implementation from a completed specification.

Currently, work on four of the five facets has begun. KBSA

is being investigated at four main institutions. Kestrel

Institute (Palo Alto, California) is developing the Project

Management Assistant and the Performance Assistant. Sanders

Associates (Nashua, New Hampshire) is developing the Requirements

Assistant. Work on the Specifications Assistant is being

performed by the University of Southern California - Information

Sciences Institute. The Development Assistant contract will be

awarded during the fiscal year 1988. The framework is being

developed by Honeywell Systems and Research Center (Minneapolis,

Minnesota).

30

7. PROGRAMMER'S APPRENTICE (PA)

This MIT project follows the approach of duplicating a human

expert's software development and problem-solving skills (Rich,

1987). The near-term goal is to develop an intelligent system

which provides assistance during the different SDLC stages. PA

uses a formalism called Plan Calculus to represent programs and

programming knowledge. This scheme is a combination of the

representational properties of flowcharts, data flow diagrams,

and abstract data types. PA uses a library of several hundred

plans; plans contain information regarding implementation methods

and program forms.

The PA is composed of three parts: Requirements Apprentice

(Rich, 1986a) provides assistance during the requirements

analysis and specifications phase; Synthesis Apprentice (Rich,

1986b) aids in validation of the specifications, detection of

inconsistencies, and other design decisions; and the

Implementation Apprentice. There is a considerable overlap

between the Implementation Apprentice and the Synthesis

Apprentice. The main difference is the increased reasoning

capabilities of the Synthesis Apprentice. While the Synthesis

Apprentice provides support during several design phases, the

Implementation Apprentice provides support only during

implementation stages (e.g., code generation, editing, and

program modification and maintenance).

Currently in PA, the Implementation Apprentice has been

developed to a prototypical stage. A knowledge-based editor,

31

KBEmacs, facilitates program creation by allowing algorithmic

fragments to be retrieved from a library (Waters, 1985; Waters,

1986). Prototypes of other components of the PA project (e.g.,

Synthesis Apprentice and Requirements Apprentice) are under

development.

32

8. KNOWLEDGE BASED PROGRAMMING ASSISTANT (KBPA)

KBPA is under development at the University of Illinois

(Urbana, Champaign). It is a knowledge-based support tool for

software development (Harandi, 1986). It assists the programmer

in the process of software development using knowledge-based

techniques. KBPA is composed of four modules: design aid,

coding aid, debugging aid, and testing aid. Each unit uses

domain specific knowledge which is also a part of the global

knowledge base. Such a structure facilitates the use of the

modules as standalones or as integrated units.

The design aid module interacts with the user and obtains

the high-level specifications (i.e., major components, inputs,

and outputs) of the system. This is accomplished with the aid of

data flow diagrams. Such diagrams not only describe a program in

terms of the data that flows through it, but also the way that

data is processed.

The coding module consists of a program editor and a design

coder. This unit aids the programmer in identifying poor

programming practices and advises the user in designing data

structures. The design coder builds templates (i.e., abstract

program plans); the editor transforms them into code.

The debugging module incorporates various features of

intelligent debugging. One such model is the shallow model. It

locates the cause of errors by having an "intuitive" idea of the

specific program being debugged.

33

In the Spring of 1986, prototypes of coding and debugging

modules had been implemented on the SUN and IBM RT. Currently,

the debugging unit is in an advanced stage of development. It is

used in debugging PASCAL programs as part of the University of

Illinois' undergraduate curriculum. The design and testing

modules will be the last in the series to be implemented.

34

9. GLITTER

GLITTER was developed at the University of Oregon (Eugene,

Oregon). It is implemented in HEARSAY III (Balzer, 1980). The

system is used in-house at the University to automate the

requirements analysis process (Fickas, 1985a).

GLITTER is based on Balzer's (1980) Transformational

Implementation (TI) model. The model starts with a formal

specification of the problem. It applies a sequence of

correctness preserving transformations until a specification

conforming to the implementation conditions is reached. The

original TI model suffered from a lack of automation and a formal

scheme for representing goals, strategies, and design decisions.

The GLITTER system is used to overcome such shortcomings.

It is an interactive transformation system that uses problem-

solving techniques to automatically generate many of the

transformation application steps. It provides a means for

formalizing goals, strategies, and design decisions by specifying

a language that allows their expression and manipulation. The

syntax for specifying a goal consists ot the keyword "GOAL" and a

set of typed arguments.

Formalism in specifying and cataloging strategies is

achieved through the use of "methods." Each method consists of a

goal slot, a filter slot, and an action slot. The goal slot

specifies the goal that needs to be achieved. The filter slot

checks for the appropriateness of the method given the context.

The action slot performs the operations needed to achieve the

35

goal. In addition, a method of conflict resolution between two

strategies that can be applied simultaneously is provided. This

is accomplished by the use of a "selection rule" mechanism. It

is similar to the IF/THEN rule construct and provides the

conflict resolution heuristic; this is usually a weight value

that is used to evaluate the suitability of the strategy given

the context.

One final advantage of GLITTER is that it provides a

documentation of the problem-solving process. This is done by

tracing the optimization sequence which led to the current state

of the problem. In other words, a history of the problem-solving

steps is provided. This aids in tracing the logic flow for

future maintenance.

Current research focusses on the development of an automated

requirements analysis system. The goal is to produce a complete

and correct requirements definition from sketchy, informal, and

incomplete user requirements (Fickas, 1985b). GLITTER is used

extensively in this effort.

36

10. SOFTWARE MANAGER APPRENTICE

As the size of a computer system increases, the complexity

of the software multiplies. The system becomes increasingly

difficult to monitor and manage. Therefore, it is useful to

investigate techniques for automating management decisions. In a

common situation, more than one programmer is writing code, with

one project manager controlling all activities. The manager must

ensure that the project is completed on time, within budget, and

is appropriate for the user's needs. Such decisions are usually

based on the manager's past experience with handling similar

development efforts.

10.1 RELEVANT RESEARCH

Little work has been done in the area of software

management support which includes metric-based software

measurement. One reason for this is the difficulty in collecting

the data for making judgements based on metrics. In addition,

there is debate regarding the accuracy of exclusively

metric-based judgements. Most research done in the field of

metrics has been in software complexity measurement (Belady,

1979; Curtis, 1979; Storm, 1979).

One research effort that does address metric-based software

management is ARROWSMITH-P, a demonstration prototype developed

for a Master's thesis at the University of Maryland (Basili,

1985). It was written using both rule-based and frame-based

approaches. This dual effort demonstrated that both techniques

37

could produce comparably close results. The research project

indicated that enough knowledge about software management could

be input to obtain valid results from the system. ARROWSMITH-P

required the user to make judgements about the software project

(i.e., whether the number of lines of code were high or average,

whether the CPU time was high or average, etc.). Therefore, the

user had to be a semi-expert, while ARROWSMITH-P acted only as an

assistant.

10.2 CURRENT EFFORT

The Software Manager Apprentice (SOFTMAN) is a software

management system developed by the Center for Intelligent Systems

(Oak Ridge, Tennessee) for the Army Institute for Research in

Management Information, Communications, and Computer Science

(AIRMICS) in Atlanta, Georgia. SOFTMAN does not require the

user to have expert knowledge. Instead, the user provides

quantitative inputs for the measurement metrics; SOFTMAN makes

the qualitative judgements. In its present development stage,

the software demonstrates the feasibility (i.e., a proof of

concept) of using expert systems as a technique for aiding

software management. One advantage of using the expert system

approach to project management is that knowledge about metrics

can be readily stored in rule sets (Figure 3). Moreover, I/O

can be accomplished using frame-bases (Figure 4). When in a

tutor mode, expert systems can also provide "how" and "why"

explanations about decisions (Emrich, 1985).

38

0

"-4 L)

0

o CY

E--4

a) 0

4-4 0

4- (-i

co z
Cl a-o 0

5.$4

W Cccori

-Y. w u 0
0) --4

> u .. 0

Cu c -r

01 4 .01 -0

od r. 0c
En~ 0u CI

0 0~ 0~ 0cc

64 r (n u $4
u U. 41 0 -4C$

-4~~.- w VI) z-)

L)4 .?4 ,u r. cc 0V)-
r= U 41 r

Cr- 0 (k) F *a el w CU
u - J- U)4 J40 -($42

0 3co 4 1- I wc 0 r-4 -)c

.a) -- (L 00 0Cu r4 u C0 H0

o U4 4 0 m44p(ac W% p 44 c' (1) 4-4
I-C 1- -4 0 r- r4 -d t 0 r45. a)-4:3 D 0.

- Cu c- C or-~ 39

0r4 0

0

..

-r4 0)

t-4 E~Q

(1 00 1

ci z

4-4 C L

C)0

E-4

Fl44
C'4 0 C)

-- -)m C

>% (1) f--

-14 r-4 0>P

w 04u4 1S4

o 0: En P4 u) 044
-) 4) a0 a*~

10 0 $4 p r=
o -4 0 $Os4

0 0) 0
r-4 1.4 C U 0 00

-r 40 r4 -0 - r0W -4

4. ;4 r404.Q 0

C')40

The SOFTMAN system differs in several essential ways from

ARROWSMITH-P. Since ARROWSMITH-P required the user to make

qualitative judgements, there was no mathematics of metrics

involved. In contrast, the SOFTMAN system will calculate metric

values and make judgements based on the ranges in which the

calculated metric value falls. In SOFTMAN, uniform metrics are

not assumed throughout the development stage. Coding is divided

into early, middle, and late stages. Different metric judgements

are used for each stage. In addition, differences due to

language, productivity levels, and design considerations are used

to test a project's "health."

A primary aim of the system is to monitor the progress of a

time-bound software project. It checks for unexpected behavior

based on historical data collected from the environment. If

anomalies are detected, SOFTMAN will issue warnings. The manager

can then go deeper into the system to locate the problem and to

receive suggestions regarding corrective actions. Another use of

the system is as a tutor for training new personnel. In this

role, SOFTMAN can assist future managers with project parameter

estimation.

10.3 SOFTMAN SYSTEM

SOFTMAN is written using an expert system development tool,

Intelligence/Compiler (IntelligenceWare, 1986) and Turbo Pascal

(Borland, 1986). The overall system structure is shown in Figure

5. The consultation option consists of three modules.

DETERMINER (i.e., Module 1) determines if there is a problem in

41

* U

040
0''~

a . 00

Q 0O

00 0 0 0

L 4 a.
@0 CD)

wL (J .0 0

a. Wo

0J4 9) 41. 0~O 09
>01 6)4. 410 00

6? 75 E2 v L 0 0. 0 -.
a. 0n 00. 0L 6 0o 4' A C " - W

()l~ 0I L. EV LOO jL ,C)CO)4
L C) 011 Q 0k

0
H 0

ow

04)

41

the software project. IDENTIFIER (i.e., Module 2) identifies

what the problem is and where it is located. REMOVER (Module 3)

recommends appropriate actions to be taken. The system is menu
driven (Appendix A). It guides the user through

question-and-answer sessions which primarily require short,

numeric answers, or menu solutions.

10.3.1 Modules 1 and 2

Upon initial entry into the system, the user is prompted to

enter the current date. This information is used to make

judgements about timely project completion. The "Main Menu"

lists available utilities (e.g., deleting projects, retrieving

consultations, and retrieving project updates).

When a new project is assigned to a manager, the "New

Project" option is used to enter the project parameters (e.g., a

unique project name, manager's name, estimated code size, number

of coders, date of start of coding, and estimated time for

project completion). Each parameter is input as a response to a

question. Once the project has been initiated, the manager can

intermittently consult SOFTMAN about the project's progress at a

given coding stage. Based on user responses and project

parameters, SOFTMAN will respond with a list of anomalies.

43

Context sensitive help for each question is provided at the

bottom of the screen. Help messages are displayed in a

different color. Additional help is available and can be called

by pressing <Enter> in place of a numeric response.

10.3.2 M

In the REMOVER module, the manager obtains a list of

possible causes for a problem that has been detected by Module 2.

To investigate these causes further, the manager will be asked

more specific questions about the parameters. Based on the

answers, SOFTHAN will suggest possible solutions. Some of these

will require the manager to update project estimates that were

initially entered. These updates will be stored and can be

retrieved for later viewing.

By asking the manager questions regarding the quality of

system design, the REMOVER module will provide links to the

design and testing phases. It is possible that SOFTMAN will

suggest that the manager backtrack and reevaluate the design

before proceeding further in the coding stage. Since the

solutions for the problems require qualitative judgements,

Module 3 will be knowledge intensive (i.e., rule based).

10.4 CURRENT STATUS

The present system has five input development parameters

gathered in Modules 1 and 2:

1) Number of lines of code.
2) Number of programmer hours.
3) Number of computer runs.
4) Number of software changes.
5) Amount of CPU time used.

44

Based on these parameters, Module 2 makes judgements on six

outputs (i.e., project schedule, productivity, code length, cpu

time, changes, and CPU runs) and identifies them as having a

problem or not. From this list, the user can analyze one problem

at a time. When a problem is selected, a color-bar comparison of

the "Optimal Value" for that output parameter and the "Actual

Value" from the project is provided. In addition, a brief text

is displayed to explain the problem. Currently, further help in

problem solution is provided for some output parameters (e.g.,

"Project Time Schedule").

After a consultation, the user may elect to store the

results for later retrieval. Such data can be used for guiding

new estimates. If the user elects not to save the session, a

message is displayed warning that all recent inputs and outputs

will be lost.

The user is given an opportunity to revise initial project

parameters. Via the "Main Menu," each update made to a project

is stored. Updates can be retrieved for future consultation.

Since the data for the metrics are environment-dependent,

the Main Menu has an option for updating the metrics data files.

Data for this utility is collected from all projects that have

been run through the SOFTMAN "Complete" utility. Upon completion

of each project, the manager should run this utility and enter

the final values of all parameters. The "Metrics Update" utility

can then be run to ensure that the metrics are adjusted by the

data from the completed project. This utility is password

45

protected so that unauthorized persons cannot change the data

files. It is important to note that the changes made in this

utility are permanent.

The current prototype performs some error checking

functions. It differentiates between numbers and strings. It

does not permit illegal choices. It displays menus for options

and uses graphics for improved I/O operations. Additionally, if

the user does not understand a particular question, help is

provided.

10.5 ENHANCEMENTS

SOFTMAN is under development as a working prototype. Its

purpose is to show the feasibility of applying expert systems to

software project management. An expanded system could have

several capabilities.

One major enhancement is to make the metrics dynamic. The

data used to make judgements will be dynamically collected and

updated in the data files for - particular environment. Although

user inputs will influence the data files, all such operations

will be transparent to the user. currently, only the

language-dependent environment parameters are dynamic (i.e., they

are read from the disk when SOFTMAN is first initialized). The

user can change this data in the ENV.DAT file. In the future,

each time data for a new project is entered, the system will

automatically update the metrics in the data files.

46

A utility to retrieve previous projects relevant to a

particular search (e.g., manager name or date of project start)

is planned. This facility can aid managers when estimating new

projects. Since projects can be recalled and consulted, such

capability can also be used to train new personnel.

Enhanced help facilities can aid decision making and

improve manager judgements. At present, such capabilities are

limited. Since it is quite common for users to misunderstand

questions and feed erroneous data, an expanded narrative could

improve user inputs. In addition, minimal capabilities are

provided by Intelligence/Compiler to include "how" and "why"

explanations. These capabilities must be built using the Turbo

Pascal interface.

Future plans include a separate utility for each

development parameter input (e.g., number of lines of code).

These utilities can be used to calculate parameter values. In

addition, external Pascal programs could be called from within

SOFTMAN to return a parameter's value.

A utility to monitor a manager's performance with regard to

estimate accuracy can be developed. When the manager uses the

"New Project" utility and enters estimates, the system will

consult past standards for similar projects. Therefore, a guide

for current judgements and individual manager performance will be

provided.

The present research projects (both SOFTMAN and

ARROWSMITH-P) assume that lines of code is an adequate and useful

47

parameter for gauging a project's "health." However, a more

accurate measure may be the number of functional modules (e.g.,

menu routines and report generators). This will be investigated

further in SOFTMAN.

At present, SOFTMAN addresses only the coding stage of the

SDLC. There are no links to the design phase or to the

maintenance phase. However, the system could include design

considerations in the REMOVER module asking the manager to

evaluate the quality of the system design. It has been reported

(Boehm, 1975; Hamilton, 1976) that approximately 65-75% of all

errors occur due to faulty design. Since a faulty or weak design

often leads to coding problems, this capability could increase

the overall management efficiency.

One of the important differences between SOFTMAN and

ARROWSMITH-P is that SOFTMAN uses different metric standards in

each coding stage. To inform the manager of the current coding

stage and advise regarding the appropriate coding stage, the

individual stages need to be clearly defined. To determine such

differences, temporal environment-dependent data will be

gathered.

In summary, SOFTMAN has shown that software management is a

candidate area for automated support. By 1990, it is estimated

that the shortfall of software engineers and analysts will reach

one million in the aerospace/defense industry alone, (Vosburgh,

1987). Since it is anticipated that this lack of technical

personnel will not be fulfilled, it must be compensated by

48

providing intelligent support tools. Better and more efficient

management of the available resources will enhance the ability to

build reliable systems. Sufficient interest has been generated

in this area to encourage future research.

49

11. DISCUSSION

The application of AI to software engineering can

qualitatively and quantitatively improve the software development

process. Such an application is most feasible through expert

systems. This is due to the nature of software design and

development. It is an activity that requires knowledge of not

only programming techniques, but also of the application domain.

Since expert systems can incorporate both kinds of knowledge

through knowledge bases, they offer a good prospect for

introducing AT in software engineering. An investigation of

current research projects corroborates this notion. In addition,

it has provided an insight into the path such research has taken

and an indication of future direction.

Extensive research has been conducted in automatic code

generation and specification languages. However, little effort

has been devoted to automating the requirements analysis phase.

Application of AI concepts such as natural language processing to

automate this phase can lead to increased speed and ease in

system development.

The prototyping approach can lead to a substantial increase

in productivity. However, conventional software development

procedures do not allow the adaption of this approach as a

feasible system development methodology. The application of Al

can make prototyping a viable alternative to the traditional

SDLC. Therefore, research efforts to increase automation in

prototyping should be encouraged.

51

Automated software management support is another area that

has not generated much interest in the past. SOFTMAN and

ARROWSMITH-P which are both knowledge-based have demonstrated the

feasibility of using AI techniques for this process. Although

the validity of metric-based measurements has been in debate,

SOFTMAN has illustrated that metrics can provide sufficient

information to judge project "health."

Current research has succeeded, to a limited extent, in

automating certain SDLC phases. Research efforts such as the

ones highlighted in this report focus on automating several of

these phases. In the near-term, more expert systems addressing

specific SDLC activities will emerge However, a fully

integrated, automated software development environment is a long-

term goal.

52

12. REFERENCES

"AI Environment Speeds Software Development," Systems and
Software, 1(8), 111-118 (1984).

Appleton, D. S. "System 2000 Database Management Systems,"
Boston, Massachusetts, November 1-2, 1973.

Balzer, R., "Transformational Implementation: An Example," IEEE
Transactions on Software Engineering, &,-7(4), 1981.

Balzer, R., L. D. Erman, P. London, and C. Williams, HEARSAY-
III: A Domain-Independent Framework for Expert Systems, pp.
108-110, in Proceedings of the First Annual National
Conference on Artificial Intelligence, August 18-21. 1980.
Stanford. California, William Kaufmann, Inc., Los Altos,
California, 1980.

Barr, A. and E. A. Feigenbaum, Handbook on Artificial
Intelligence: Vol. 1, Kaufman, Los Altos, California, 1981.

Barr, A. and E. A. Feigenbaum, Handbook on Artificial
Intelligence: Vol. 2, Kaufman, Los Altos, California, 1982.

Basili, V. and C. Ramsey, "Arrowsmith-P: A Prototype Expert
System for Software Engineering Management," pp. 252-264 in
Expert Systems in Government Symposium, October 24-25. 1985.
McLean. Virginia, IEEE Computer Society Press, Washington,
D. C., 1985.

Belady, L. A., "An Anti-Complexity Experiment," pp. 128-129 in
Workshop on Quantitative Software Models. October 9-11,
1979. Kiamesha Lake. New York, IEEE Computer Society Press,
Washington, D. C., 1979.

Benner, K. M. and D. A. White, "The Knowledge-Based Software
Assistant: Overview," in Proceedings of the 2nd Annual
Knowledge-Based Software Assistant Conference. August 18-20,
1987. Utica. New York, Rome Air Development Center, Griffiss
Air Force Base, New York, 1987.

Beregi, W. E., "Architecture Prototyping in the Software
Engineering Environment," IBM Systems Journal, 21(l), 4-17
(1984).

Birrell, N. D. and M. A. Ould, A Practical Handbook for Software
Develpmnt, Cambridge University Press, New York, New York,
1985.

53

Blum, B. I. and V. G. Sigillito, "An Expert System for Designing
Information Systems," Johns Hopkins APL Technical Digest,
2(1), 23-30 (1986).

Boehm, B. R., R. McClean, and D. Urfrig, "Some Experience with
Automated Aics to the Design of Large Scale Reliable
Software," pp. 105-113 in; International Conference on
Reliable Software. April 21-23. 1975, Los Angeles.
California, IEEE, New York, New York, 1975.

Borland, Turbo Pascal, Version 3.01, Borland International, Inc.,
Scotts Valley, California, 1986.

Curtis, B., "In Search of Software Complexity," pp. 95-106 in
Workshop on Quantitative Software Models. October 9-11.
1979, Kiamesha Lake. New York, IEEE Computer Society Press,
Washington, D. C., 1979.

Emrich, M. L., ExPert Systems Tools and Techniaues, ORNL/TM-
9555, Oak Ridge National Laboratory, Oak Ridge, Tennessee,
1985.

Fickas, S. F., "Automating the Transformational Development of
Software," IEEE Transactions on Software Engineering, SE-
11(11), 1268-1277 (1985a).

Fickas, S. F., A Knowledge-Based Agyroach to Specification
Acquisition and Construction, CIS-TR 85-13, University of
Oregon, Eugene, Oregon, 1985b.

Fischer, G. and M. Schneider, ",Knowledge-Based Communication
Processes in Software Engineering," pp. 358-368 in Seventh
International Conference on Software Engineerina. March 26-
29, 1984. Orlando. Florida, IEEE Computer Society Press,
Washington, D.C., 1984.

Goldberg, A. T., "Knowledge-Based Programming: A Survey of
Program Design and Construction Techniques," IEEE
Transactions on Software Engineering, SE-12(7), 752-768
(1986).

Goldberg, A. T. and D. R. Smith, "Performance Estimation for a

Knowledge-Based Software Assistant," in Proceedings of the

2nd Annual Knowledge-Based Software Assistant Conference.
August 18-20. 1987. Utica. New York, Rome Air Development
Center, Griffiss Air Force Base, New York, 1987.

Gremillion, L. L. and P. Pyburn, "Breaking the Systems

Development Bottleneck," Harvard Business Review, kj(2),

130-137 (1983).

54

Haltz, D. H., "ADF Experiences at John Deere," 0303-SHARE, 50
(1980).

Hamilton, M. and S. Zeldin, "Higher Order Software: A
Methodology for Defining Software," IEEE Transactions on
Software Engineering, SE-2(1), 9-32 (1976).

Harandi, M. T. and M. D. Lubars, "A Design Environment for
Software Systems,"in Proceedings of the Conference on Expert
Systems Technology in ADP Environment. November 1-3. 1987,
Washington. D. C., Oak Ridge National Laboratory, Oak Ridge,
Tennessee, 1988.

Harandi, M. T., "Applying Knowledge-Based Techniques to Software
Development," Perspective in Computing, k(l), 14-21 (1986).

Harris, D. R., "An Overview of the Knowledge-Based Requirements
Assistant," in Proceedings of the 2nd Annual Knowledge-Based
Software Assistant Conference, August 18-20, 1987, Utica,
New York, Rome Air Development Center, Griffiss Air Force
Base, New York, 1987.

Huseth, S. and T. King, "A Common Framework for Knowledge-Based
Programming," in Proceedings of the 2nd Annual Knowledge-
Based Software Assistant Conference. August 18-20. 1987.
Utica, New York, Rome Air Development Center, Griffiss Air
Force Base, New York, 1987.

IntelligenceWare, Intelligence/Compiler Manual, IntelligenceWare,
Inc., Los Angeles, California, 1986.

Johnson, J. R., "A Prototypical Success Story," Datamation,
29(11), 251-256 (1983).

Johnson, W. L., "Overview of the Knowledge-Based Specification
Assistant," in Proceedings of the 2nd Annual Knowledge-Based
Software Assistant Conference, August 18-20. 1987, Utica,
New York, Rome Air Development Center, Griffiss Air Force
Base, New York, 1987.

Jullig, R., KBSA-PMA Technical Report, Rome Air Development
Center, Griffiss Air Force Base, New York, 1986.

KBSA, 2nd Annual Knowledge-Based Software Assistant Conference,
August 18-20, 1987, Utica, New York, Rome Air Development
Center, Griffiss Air Force Base, New York, 1987.

Lipp, M. E. (ed.), Prototyping: State of the Art Report,
Pergamon Infotech, Maidenhead, Berkshire, England, 1986.

55

Loomis, M. E. S. and T. P. Loomis, "Prototyping and Artificial
Intelligence," pp. 65-73 in M. E. Lipp (ed.) Prototvoina:
State of the Art Report, Pergamon Infotech, Maidenhead,
Berkshire, England, 1986.

Martin, J., Fourth Generation Languages. Vol. 1, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1985.

Martin, J. and C. McClure, Software Maintenance: The Problem and
Its Solution, Prentice-Hall, Inc., London, England, 1983.

Mason, R. E. A., T. T. Carey, and A. Benjamin, "A Tool for
Information Systems Prototyping," ACM Sicisoft Software
Engineering Notes, 2(5), 120-125 (1982).

McCraken, D. D., "Software Systems in the 80's: An Overview,"
Computerworld Extra, 1A(38), 5-10 (1980).

Mishkoff, H. C., Understanding Artificial Intelligence, Texas
Instruments, Dallas, Texas, 1985.

Naumann, J. D., "Prototyping: The New Paradigm for Systems
Development," MIS Quarterly, 6(3), 29-44 (1982).

Partridge, D., Artificial Intelligence: Applications in the
Future of Software Engineering, Ellis Horwood Limited,
Chicester, West Sussex, England, 1986.

Read, N. S. and D. L. Harmon, "Assuring MIS Success," Datamation,
27(2), 109-120 (1981).

Rich, C. and H. E. Shrobe, "Design of a Programmers Apprentice,"
pp. 138-173 in P. H. Winston and R. H. Brown (eds.) AI: An
MIT Perspective, Vol. 1, MIT Press, Cambridge,
Massachussetts, 1979.

Rich, C. and R. C. Waters, The Programmer's Apprentice Project,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1987.

Rich, C. and R. C. Waters, Toward a Requirements Apprentice: On
the Boundary Between Informal and Formal Specifications,
A.I. Memo No. 907, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1986a.

Rich, C. and R. C. Waters, The Programmer's Apprentice: A
Program Synthesis Scenario, A.I. Memo No. 933, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1986b.

Schank, R. C. and P. G. Childers, The Coganitive Computer,
Addison-Wesley, Reading, Massachusetts, 1984.

56

Scott, J. H., "The Management Science Opportunity: A Systems
Development Management Viewpoint," MIS Quarterly, 2(4), 59-
61 (1978).

Sommerville, I., Software Engineerinq. Second Edition, Addison-
Wesley Publishing Company, Reading, Massachusetts, 1985.

Spies, P. B., "Designing Systems for Users," Library Hi Tech,
1(1), 75-84 (1983).

Storm, I. L. and S. Preiser, "An Index of Complexity for
Structured Programs," pp. 130-133 in Workshop on
Ouantitative Software Models, October 9-11. 1979, Kiamesha
Lake. New Yor, IEEE Computer Society Press, Washington,
D. C., 1979.

Tavendale, R. D., "A Technique for Prototyping Directly from a
Specification," pp. 224-229 in Proceedings of the Eighth
International Conference on Software Engineering. August 28-
30. 1985. London. England, IEEE, New York, New York, 1985.

Vosburgh, J. R. and M. A. Tanous, "Software Productivity Looms as
Aerospace/Defense Issue, "pp. 153-157 in Proceedings of
Technoloav Strategies '88 Conference on the U.S. Army
Information Systems Engineering Command Advanced Techngloav
Office. February 9-12. 1988. Alexandria. Virginia, The
American Defense Preparedness Association, 1988.

Waters, R. C., "KBEmacs: Where's the AI?," Al Magazine, 7(1),
47-56 (1986).

Waters, R. C., "The Programmer's Apprentice: A Session with
KBEmacs," IEEE Transactions on Software Engineering, SE-
II(ii), 1296-1320 (1985).

Wess, B. P. Jr., "Artificial Intelligence Techniques Speed
Software Development," Mini-Micro Systems, 17(11), 127-136
(1984).

Zelkowitz, M. V., A. C. Shaw, and J. D. Gannon, Principles of
Software Engineering and Design, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1979.

57

13. ANNOTATED BIBLIOGRAPHY

13.1 GENERAL

Ary, D. and S. Saib, "TIMM/TUNER - The Intelligent Vax Computer
Tuner," VAX/RSTS Professional, 7(2), 32-40 (1985).

This article was written by two employees
of the General Research Corporation to
report on their usage of GRC's expert
system shell, TIMM (The Intelligent Machine
Model). They have used the knowledge of
experts in adjusting a VMS-based VAX
system's parameters to suggest performance
tuning tasks. A "walkthrough" of a sample
consultation is given followed by
suggestions for system enhancements.

(Aid VAX Tuning)

Basili, V. R. and C. L. Ramsey, "ARROWSMITH-P - A Prototype
Expert System for Software Engineering Management," pp. 252-264
in K. N. Karna (ed.) Proceedings of Expert Systems in Government
Symposium, McLean, Virginia, October 24-25, 1985, IEEE Computer
Society Press, Washington, D. C., 1985.

The authors built two versions of a
software management expert system: one
rule-based; one frame-based. The systems
were developed in KMS, an expert system
shell used at the University of Maryland.
The knowledge bases contain possible causes
for aberrations in such measurements as
programming hours, computer time, and
number of changes. When an abnormal
software development pattern is detected,
an explanation of possible causes is
provided. When the prototypes were
compared, it was determined that the rule-
based version provided more complete
solutions than the frame-based prototype.
Results of the comparison are pro ,ided as
are plans for system(s) revisions.

[ARROWSMITH-P - Management]

59

Blanchard, D. C. and R. M. Myers, "The Knowledge Representation
Tool," pp. 137-147 in Proceedings of ROBEXS '85: The First Annual
Workshop on Robotics and Expert Systems, NASA/Johnson Space
Center, June 27-28, 1985, Instrument society of America, Research
Triangle Park, North Carolina, 1985.

In a sketchy, and, at times, difficult to
follow article, the authors present a
discussion of KRT (Knowledge Representation
Tool). KRT is a LISP-based system that
aids a software engineer in the "System
Model" approach to structured analysis.
(The System Model uses data flow diagrams,
mini-specifications, and a data
dictionary.) KRT represents knowledge in
an object-oriented programming style;
process objects are subdivided until they
are refined to the level of mini-
specifications. The authors suggest that
KRT could aid software engineers in several
ways; the primary example given is in the
area of software maintenance.

[Aid Structured Analysis
and Software Maintenance)

Blum, B. I. and V. G. Sigillito, "An Expert System for Designing
Information Systems," Johns Hopkins APL Technical Digest,
1(1), 23-30 (1986).

The authors point out that knowledge needed
to develop software (i.e., software
engineering knowledge) can be viewed in two
major divisions: product dependent and
algorithmic, or application specific and
heuristic. The lao are suitable for
representation in an expert system
knowledge base. Using this division as a
guiding factor, the authors propose the
development of an integrated environment
for system building (ESB). ESB will
consist of three modules: a definition
model for capturing application domain
knowledge; a transformation module where an
expert system changes the specifications
developed in the definitions module into
executable specifications; and a generation
module for generating the program.

[Aid Analysis, Specification, Design, Code Generation]

60

Cronk, R. N. and D. V. Zelinski, "ES/AG: System Generation
Environment for Intelligent Application Software," pp. 96-100 in
Proceedings SOFTFAIR II: A Second Conference on Software
Development Tools, Techniques, and Alternatives, San Francisco,
California, December 2-5, 1985, IEEE Computer Society Press,
Washington, D. C., 1985.

An integrated set of software development
tools and languages that is expert system-
based is described - Expert
System/Application Generator (ES/AG). The
knowledge base contains three types of
knowledge: factual, procedural, and non-
procedural. Knowledge is represented by
rules (for non-procedural knowledge) and
frame-like symbols (for factual and
procedural knowledge). Non-procedural
control strategies, explanation facilities,
a user interface to the problem-solving
model, a LISP interpreter, and debugging
facilities are included. ES/AG runs in a
Unix environment and has been used at Bell
Laboratories for several applications
(e.g., equipment configuration and software
cost estimating).

CES/AG)

Dunning, B. B., "Expert System Support for Rapid Prototyping of
Conventional Software," pp. 2-6 in Proceedinqs of Autotestcan
'85: IEEE International Automatic Tesin Conference,
Uniondale, New York, October 22-24, 1985, IEEE, New York, New
York, 1985.

The author reviews conventional software
development methods and rapid prototyping
procedures. He then says that the
flexibility of a LISP processor and an
expert system shell (e.g., KEE or EXPLORER)
can make rapid prototyping easier.
However, he does state that the savings in
time and costs are highest during the
design phase. Implementation usually means
rewriting the entire prototype in a
conventional language; this process takes
seven times the original effort. Major
advantages and a few disadvantages of this
approach to software development are cited.
Overall, a rather terse look at a topic
that deserves more indepth analysis.

(Aid Rapid Prototyping]

61

Fickas, S. F., "Automating the Transformational Development of
Software," IEEE Transactions on Software Engineering, SE-l1(1l),
1268-1277 (1985).

The author uses AI techniques to alleviate
the major weakness (undermechanization) of
Balzer's transformational implementation
(TI) model. Fickas found that the
formalization of goals, strategies,
selection rationale, and human TI methods
were areas that needed to be addressed
before the model could be automated.

GLITTER was developed (written in HEARSAY
III) and used for creating a package router
and a small text editor. GIST was the
specification language used in GLITTER. It
was suggested that information generated by
GLITTER on problem-solving steps could help
in maintenance; research is currently
underway to classify possible changes to
specifications and to identify the
associated salvageable code.

Overall, a somewhat confusing article, the
small degree of automation offered may not
justify the use of a new system and
specification language.

(GLITTER/GIST - Program Transformation]

Frenkel, K. A., "Toward Automating the Software-Development
Cycle," Communications of the ACM, 28, 578-589 (1985).

Two automatic programming research efforts
are discussed: Intermetrics' (Cambridge,
Massachusetts) compiler code generator, and
the University of Waterloo's (Ontario,
Canada) real-time debugging system, Message
Trace Analyzer. While the author agrees
with some researchers who feel that expert
systems may be "oversold" and that a
proliferation of AI languages could produce
much of the same problems that now exist
with the conventional software development
languages, she also feels that the need for
increased productivity is so great that any
avenue of relief will be pursued.
Furthermore, the work done now in expert
systems will just add to the next
generation of software productivity tools.

(Aids Code Generation/Debugging]

6?

Haradhvala, S., B. Knobe, and N. Rubin, "Expert Systems for High
Quality Code Generation," pp. 310-313 in Procedings of the
First Conference on Artificial Intelligence Applications, Denver,
Colorado, December 5-7, 1984, IEEE Computer Society Press,
Washington, D.C., 1985.

Intermetrics employees describe the
evolutionary process of developing an
expert system to aid in compiler code
generation. The final system was based
upon a modified version of Cattell's (CMU)
Production Quality Compiler Compiler (PQCC)
project for the Bliss-II. Written in
Pascal, it runs on IBM 370's. The
knowledge base contains some 500 production
rules; a depth-first search strategy is
followed. Development took three to six
person months.

(Aid Code Generation)

Harandi, M. T., "Applying Knowledge-Based Techniques to Software
Development," Perpsectives in Computing, 6(l), 14-21 (1986).

A discussion of the features of KBPA, a
krowledge-based programming assistant
developed at the University of Illinois.
The author details the aspects and problems
in such systems and highlights the
prototype implementation of a design,
coding, and debugging unit. The paper is
good reading for understanding the issues
in knowledge-based techniques.

(Design, Debugging, Code Generation]

63

Harandi, M. T. and M. D. Lubars, "A Knowledge Based Design Aid
for Software Systems," pp. 67-74 in Proceedings SOFTFAIR II: A
Second Conference on Software Development Tools, Technquesjand Alte'rnatives, San Francisco, California, December 2-5 1985,
IEEE Computer Society Press, Washington, D. C., 1985.

The paper discusses the capabilities of a
prototype developed by researchers at the
University of Illinois at Urbana-Champaign.
The system addresses the specification and
design phases of software engineering.
Using the dataflow modeling method of
program design, the development process is
viewed as a series of refinements (i.e.,
leveling). The system has three
components: a knowledge base with design
schemas, a data dictionary, and application
domain knowledge; a design refinement unit
which is an agenda-driven inference engine;
and natural language and graphics
interfaces. The prototype runs on a Sun
workstation, and, according to the authors,
has been used to develop small example
systems.

[Aid Specification/Design)

Hill, C., "A Software Revolution Looms on the Horizon,"
InformationWEEK, 94, 40 (1986).

This article stresses the quantitative and
qualitative improvements to be gained in
MIS software development by utilizing
automated productivity tools. It states
that many Fortune 500 companies are
employing such tools to eliminate
applications backlogs and improve quality,
citing significant reductions in
development schedules. It concludes by
emphasizing the benefits of development
tools to both programming staffs and MIS
managers.

[Future of MIS]

64

Janusz, P. E. and P. T. Eckert, "Software Quality Assessment
Measure," pp. 282-284 in Proceedings of the Annual Reliability
and Maintainability Symposium, IEEE, New York, New York, 1986.

The Army assessed the feasibility of using
expert systems to aid quality assurance,
Software Quality Assessment Measure (SQAM).
The authors used manuals and reports to
analyze one aspect of a QA officer's job
(i.e., review of system storage allocations
for adequacy). That segmented task was
modeled using Teknowledge's expert system
shell, M.la (for expert consultation) and
dBase III (for the operations checklist and
menu generation).

[SQAM System)

Kornell, J., "A VAX Tuning Expert Built Using Automated Knowledge
Acquisition," pp. 38-41 in Proceedings of the First
Conference on Artificial Intelligence Applications, Denver,
Colorado, December 5-7, 1984, IEEE Computer Society Press,
Washington, D.C., 1985.

The paper covers the use of General
Research Corporation's (GRC) expert system
shell, TIMM. The author is a GRC employee
who used the tool to develop a prototype.
TIMM/Tuner tunes VAX computers to gain
maximum performance. The system is modular
in nature and contains seventeen knowledge
bases. The author points out that when
changes in the system configuration or load
occur (e.g., the number of terminals or
users increase), up to one hundred
parameters must be checked and adjusted
accordingly. Overall, a very brief look at
the prototype is given, with most of the
discussion centering upon the capabilities
and advantages of the expert system shell.

[TIMM/Tuner)

65

McCrone, J., "Alvey Shows a Defence Bias," Computing, September
5, 14 (1985).

Even though Britian's Alvey was intended to
move research from the laboratory into
commercial use, the program has now
focussed on MoD (Ministry of Defence)
needs. This news article covers some of
the reasons why Alvey's software
engineering program has become defense
oriented. Major reasons suggested were the
collapse of the Ada community's projects
and NATO's push for the use of Ada. Four
primary ipse (integrated project support
environment) projects are discussed. The
Eclipse project addresses an Ada ipse which
will run on the VAX minicomputer. Aspect
will port Ada to Unix software development
tools. MDSE (Mascot Design Support
Environment) is being extended to include
an expert system that will aid software
design and prototyping. Forest addresses
the specifications stage of system
development.

(Alvey Projects)

Meyer, B., "The Software Knowledge Base," pp. 158-165 in Eighth
International Conference on Software Engineering, Imperial
College, London, United Kingdom, August 28-30, 1985, IEEE
Computer Society Press, Washington, D. C., 1985.

A knowledge-based approach versus a
database approach to storing information
about a software project is discussed. The
project, referred to as Software Knowledge
Base (SKB), aids with the storage of
software components and their
relationships. Design criteria and
software relations and constraints are
included. The author feels such a
knowledge base could be used for all phases
of the development life cycle (e.g.,
specifications, design, testing, project
management). Also discusssed are follow-on
research efforts that are currently
underway at the University of California,
Santa Barbara (e.g., concurrent development
of an SKB in PROLOG and a relational
database using INGRES).

(Project Management)

66

Pidgeon, C. W. and P. A. Freeman, "Development Concerns for a
Software Design Quality Expert System," in Proceedings of the
22nd ACM/IEEE Design Automation Conference, Las Vegas, Nevada,
June 23-26, 1985, IEEE Computer Society Press, Washington, D. C.,
1985.

This paper reviews a number of articles
regarding software design systems. It is a
comprehensive study of the issues dealing
with systems based on Module
Interconnection and Program Design
Languages (MIL/PDL). The author gives an
example of interactions that take place
between human designers and an expert
system dealing with quality design.

[Design]

Ramamoorthy, C. V., V. Garg, and R. Aggarwal, "Environment
Modeling and Activity Management in Genesis," pp. 2-9 in
Proceedings SOFTFAIR II: A Second Conference on Software
Development Tools, Techniques, and Alternatives, San Francisco,
California, December 2-5, 1985, IEEE Computer Society Press,
Washington, D. C., 1985.

Genesis is a Unix tool being developed by
the University of California, Berkeley
researchers to support software
development. It is primarily a knowledge
based resource and activities management
system. Its knowledge base contains an
entity-relation-attribute model that is
extended by rules about software resources
and the development process. The tool
consists of the following components: a
specification language; a resource
extractor (to provide traceability of
resources between requirements and the rest
of the system); a resource manager (to
manage entities); and an activity manager
(to check for inconsistency and to co-
ordinate the work of multiple programmers).
Research on this project has been in
process since 1983. Several planned and
possible enhancements are listed.

[GENESIS - Management]

67

Rawlings, T. L., "A Technological Approach to Automating Software
Maintenance," pp. 147-149 in Proceedings of the First Software
Maintenance Workshop, 1983, IEEE, New York, New York, 1984.

The author says much software maintenance
could be eliminated with automatic program
generators where changes in specifications
just mean system regeneration. From user
specifications, a software manufacturing
system (DARTS) generates source code for
all computers in a distributed system. The
author feels much of the problem with
software maintenance lies in capturing and
communicating knowledge about the software
system. Using a knowledge based system to
capture such information is suggested.
Since DARTS captures the programmer's
expertise, users can change specifications
and regenerate the program without
assistance from the original developer.

(DARTS - Maintenance]

Rich, C., "Artificial Intelligence and Software Engineering: The
Programmer's Apprentice Project," pp. 29 in Proceedings of the
1984 Annual Conference of the Association for Computing
Machinery: The Fifth Generation Challenge, San Francisco,
California, October 8 1984, Association for Computing
Machinery, Inc., New York, New York, 1984.

Rich presents a briefing on the status of
the Programmer's Apprentice Project at MIT.
The goals are presented: to develope an
intelligent assistant for programmers.
Information about the application domain is
provided: how programmers analyze, modify,
verify, document, etc. the programming
process. Plans for a new program editor
and its capabilities are discussed; the
new editor will allow many logical changes
in a program to be achieved by one
command.

[PROGRAMMER'S APPRENTICE - Analysis/Design]

68

Rokey, M., "The Dataflow Architecture: A Suitable Base for the
Implementation of Expert Systems," Computer Architecture News,
13(4), 8-14 (1985).

The author proposes the dataflow model of
architecture over the conventional Von
Neumann style for building expert systems.
One major advantage listed is the inherent
parallelism in the dataflow model leading
to more efficient rule-searching.
Furthermore, the problems of incremental
change can be removed in this model. The
paper suggests that it may be worthwhile to
build systems with such a model.

(Design]

Ruth, G. R., "PROTOSYSTEM I - An Automatic Programming System,"
pp. 215-221 in C. Rich and R. C. Waters (eds.), Readings in
Artificial Intelligence and Software Engineering, Morgan Kaufman
Publishers, Inc., Los Altos, California, 1986.

The paper discusses a research project
underway at MIT. The PROTOSYSTEM I project
has the goal of taking user specifications,
automatically designing the program, and
generating the code. To date, only the
PL/I and JCL code generating modules have
been developed.

(Code Generation]

69

Schindler, Jr., P. E., "An Intelligent Way to Develop Software,"
InformationWEEK, 71, 17 (1986).

This article contends that knowledge-based
systems can be employed in traditional
software development environments. Such
systems can retain critical design
information in the early stages of a
project for use in later stages. The
article also indicates IBM's recent
interest in AI applications. This is
evidenced by IBM's introduction of a
knowledge-based COBOL structuring tool and
expert system shells for VM and MVS
systems.

CAI for Software Development)

Stephens, M. and K. Whitehead, "The Analyst - A Workstation for
Analysis and Design," pp. 364-369 in Eighth International
Conference on Software Engineering, Imperial College, London,
United Kingdom, August 28-30, 1985, IEEE Computer Society
Press, Washington, D. C., 1985.

Requirements analysis (CORE) and design
(MASCOT) methods are supported via expert
systems and knowledge base techniques in a
personal workstation, ANALYST. The
graphics and windowing capabilities are
written in PASCAL; the rule-based methods,
and storage and retrieval of application
information are written in PROLOG. The
authors feel that by using a knowledge-
based approach, new rules can be added as
needed and new methods can be added to
support other phases of the software
development life cycle. Shortcomings of
the system's performance as judged against
human experts are cited, as are potential
system enhancements.

[ANALYST - Analysis/Specs/Design)

70

Studer, R., "Knowledge-Based Software Engineering Environments,"
Computer Physics Communication, 38(2), 277-287 (1985).

A method is proposed for controlling and
managing communication between team members
working on a project that is organized in a
decentralized manner. A distributed
knowledge-based software engineering
environment (DSEE), is used to collect and
distribute information to team members.
The knowledge base contains four types of
information: objects and their
relationships in a data base; structure and
responsibility of the project team;
description of each tool provided by the
system; and team member skills and
experience levels, as well as team
function. The Temporal Hierarchical Data
Model with Petri Net concepts (THM-Net) has
been chosen as the architectural model for
the system.

[DSEE - Project Management)

Sussman, G. J., "Intelligent Support for the Engineering of
Software," pp. 397-399 in Eighth International Conference
on Software Engineering, Imperial College, London, United
Kingdom, August 28-30, 1985, IEEE Computer Society Press,
Washington, D. C., 1985.

A short article that suggests other
branches of engineering (e.g., electrical
engineering) may be able to contribute to
the process of software engineering. The
problems of debugging are cited. AI
research in areas of formulating
theoretical constructs as computational
algorithms for software development is
suggested. The author notes value in the
LISP-family of tools in terms of recursion
and manipulation. He feels such
"flexibility" could support rapid
prototyping.

(Aid Debugging]

71

Wolfe, A., "Software Productivity Moves Upstream," Electronics,
528(12), 80-86 (1986).

The article focusses on the work being done
in the area of automating the software
development life cycle, especially those
phases "upstream" from code generation.
Research endeavors are discussed: MCC's
LEONARDO (design phase); the Software
Engineering Institute's SOFTWARE FACTORY
(all phases); IBM/Japan's PROMPTER (code
generation); Lockheed's work in low-level
design; and TRW's work on design tools and
cost models. The author says that testing
and maintenance are major issues that must
be addressed. With NASA and SDI efforts
increasing, the importance of quality
assurance and testing to detect and correct
all possible errors is paramount. With
automated design and documentation,
maintenance will improve.

[Current Research)

13.2 PROTOTYPING

"AI Environment Speeds Software Development," Systems and
Software, 3(8), 111-118 (1984).

This paper discusses the advantages in
using the Symbolics 3600 environment for
software development and rapid prototyping.

Beregi, W. E., "Architecture Prototyping in the Software
Engineering Environment," IBM Systems Journal, 23(1), 4-17
(1984).

The author examines various defects in
present day software methodology. A
desciplined approach, utilizing formal
specification techniques, rapid
prototyping, and static and dynamic
behavior analysis techniques to verify
system expectations is presented.

72

Bottom, J. S., A. D. Bernard, and K. W. Anderson, "Application
Prototyping with Microcomputer Database Managers," pp. 60-73 in
Proceedings of the Office Automation Society International
Conference and Workshop for Office Professionals, September 3-6,
1985, San Fr-ancisco, Calor , Office Automation Internatlonal
Society, 1985.

The paper details the various tools that
are essential for rapid prototyping.
Various commercially available
microcomputer database packages are

* "compared in terms of ease of use and power.

Carey, T. T. and R. E. A. Mason, "Information System Prototyping:
Techniques, Tools, and Methodologies," INFOR, 21(3), 176-190
(1983).

The paper reviews prototyping techniques in
use. A number of prototyping tools, their
techniques and methodologies are discussed.

Gremillion, L. L. and P. Py-burn, "Breaking the Systems
Development Bottleneck," Harvard Business Review, 61(2), 130-137
(1983).

Three alternative approaches to the
traditional life-cycle approach are
presented. The purpose of the proposed
mathods is to get the user involved in the
process of software development. Criteria
for selecting the appropriate development
strategy are discussed.

Johnson, J. R., "A Prototypical Success Story," Datamation,
29(11), 251-256 (1983).

This article discusses various levels of
prototyping. The author presents
development situations where prototyping
and fourth generation languages yield best
results.

Loomis M. E. S. and T. P. Loomis, "Prototyping and Artificial
Intelligence," pp 65-73 in M. E. Lipp (ed.) Prototyping: State of
the Art Report, Pergamon Infotech, Maidenhead, Berkshire,
England, 1986.

In this paper, the advantages and
disadvantages of applying artificial
intelligence techniques for rapid
prototyping are discussed.

73

Mason, R. E. A., T. T. Carey, and A. Benjamin, "A Tool for
Information Systems Prototyping," ACM Sigsoft Software
Engineering Notes, 1(5), 120-125 (1982).

This paper discusses an "architecture -
based" methodology, where a prototype is
developed using interactive scenarios.
ACT/l is a development tool specifically
designed for this purpose. Its usage as a
product specification and production tool
are examined.

Naumann, J. D., "Prototyping: The New Paradigm for Systems
Development," MIS Quarterly, 6(3), 29-44 (1982).

This article discusses various principles
underlying prototyping. Of interest is a
graphic cost comparision between the life-
cycle and prototyping approach. Examples
of projects developed by prototyping are
presented.

Spies, P. B., "Designing Systems for Users," Library Hi Tech,
.(1), 75-84 (1983).

Design errors account for more than fifty
percent of the overall development cost.
According to the author, this is the
motivation for rapid prototyping. Examples
of success with the prototyping approach
are cited.

Wess, B. P. Jr., "Artificial Intelligence Techniques Speed
Software Development," Mini-Micro Systems, 17(11), 127-136
(1984).

This paper outlines the ways in which
Artificial Intelligence techniques (e.g.,
Prolog) were used jn the development of a
commercial product.

74

APPENDIX A: SOFTMAN SCREENS

The run-time version of the SOFTMAN system is resident on a

5 1/4" floppy diskette. A "SOFTMAN" command will load the

program. After entering the current date, the user interacts

with the system via a "Main Menu." By positioning the arrow on

the same line as the desired selection and pressing "Enter," a

menu selection is made.

Upon choosing an option, the user must respond to a series

of questions. Responses are primarily in the form of numeric

data. The number and nature of the questions vary with the

option chosen.

Once the series of questions has been completed, or the

operation (e.g., file deletion) accomplished, the "Main Menu' is

again displayed. When no further options are desired, the user

can return to the "Main Menu," place the arrow on the same line

as the "Exit" option, and SOFTMAN will return the user to the

operating system.

75

4-)

rcl >1

CC))
co 4)

N 4'

1 0 Z
q~44

>1 0

0
>1 99 co LO

rc 1E-4 ' ~ 4
H >1 0

Q)I1
41 ro

Q) m
(n U]4
edoa)

Q) 4-

76

0 04

-44-

oc-1 0
44 -r-

Lfl 4-i

0 41) C c~ (a a)
U C4-i(O) 4J 0Q)4J 4J Q

k~ 0 a 4 4 4-P- 4E

0>1 m$-p Q) 44 A
a)p(dr 4 '~Q)QO aP.0Z

w 0 O 4 1 41 0 (a > >

~4 4 :3 04J U 0' -- H4 4

04 WO) HQ0.e0iQ-H)() ()0)4-l V

77

E-
En
wI
E-

0 4J~ 0

*. r p

0 0)

00

4.)) x 41 0

o 0r- it : d

0 E4-4 SI

4) 1 0 (a~0

'dtl w M

00 (U0

F4 4- 1:'4

73

0

011

0 4

00

41 0

W 4)
-4)

-)

In

04 E -Q7

0 E-4

41 r- z

rz 0
01 r-4

040

m 0

400

4J 0

c 0 0

(0 4i

0 toa)

o 04 04i

04 L

80

41)

0
00

E-4 z014.) S4 H
4 .0

bi q. 4 -,.

0 0 0 E-4

0 A

.1-4 to 0 0

4J 3: N 0 •1

(a 0 0o .Q4 r.-N
-r) r-4 d (

0 0

4) t 00)

41 80

4 4)iI

mU 0 0

4.3 0 4 0
V) . -I ON.
0 00

0 O

43 0
4-4 C -

1~81

C14

.-4

0

0
4J n

E-41 0 z

0Y41 z
~i4I 0

0 0

0

0

'-4

4)

U82

cO
I
I

0

E-4I -

01 1 H-

01 to o

W ~I in 0
z0

41

4.)

r-I

ON3
4)

4)

iI

4)
r4

83

*44

0- 0

E4 4.1 z

941 H

W 0
0I

~~41 0
4)0

*4)

4

) 4

41 0

9)h~

0

4i

84

004

4--

*44 i

0 (a 0
0a) -4
04r-1 4-)

.1- 4J 4) 400)J4o 4) 0 .-r-N 0O U 4 MM
z rN 0 J a.'~-4 i FU

0 -r P U () rOPO C U)

kI 04 ad(4J 4-J - l. 04 O a
04 4 r- M ~00 ::) U

1 0 4J' 0 0 4 *rNr. 9-4

I~~a C-) oJ0 'd0 4)44

w0 0 m >i > (U) A

W (f ~0 00wowI

~4 0 0 i)a)r Q4) 04-A V
zOOl3QC,)O0~z= x

85

E-4

EE-4
E-'
biI

z I HJ

H10 0.
M 1 (.) 9 4

H0 1 In 0

0 1 0 4J 1

C.) 1 14 0s0

0) 0
4J 4.

0 .- 4.)
.L)4

4) 4~ 0 o 1
0~ 1044 0

0 9 -n 4.)

.4.) 4)
k 0 04'>4 0
0 9 0 V

4 0 (d
01 0 0 k.

0 z 04 4)

86______

U

00

co
04 4-) 1

On 111; 00 040 • rq

E-4 I a) a) 0 in

1 r4- >4 r 4 -1 L)

C)41 (1) C **4 H.

(1) 0- 0 (1
EI .4 J - 4 r4

U) 1 0) J4 0 tP9 H
w0 IU HO 04t kr 0t

EI 4. r) 04I d) i0 4)W
E-4 1 . 00 It od r4 9
Iz 1 0) $4- 444 V -~O' 000 . t

W I - 04 40U r 0 V (A4 0 0
1- 1 00 U 0d C-H

1 4J >4-Ij w~4 OH O0 r
.C ~44-I Ud 004.)) O
4JO 0 rOw (a1 94)-

4)4 4.4v-) 4J-4 4Jz
44 k P4-4 fO v-

009i 0 444)
4) 0 vp 440 fO V

9-JU' 0 va) 9 04-1-
(a go0t 4n 44)

87

-444--

*40

0 u t 4

4) 0 -r-N 0 4J

0 -r- W 0W 4) 100 (n
04 V-c00 00

0 0440 4) r
ZI0 V t 0k M: :

U WOV Oi M 4 0 U

w 004)4
w r-4 01)0U4 w 0

4 : r-4 UJV -- 4 4J

04--4 q) 4) . 0) 4 H

88

E-41

000

0
V

0I E-4 >1

0

E-414

HI UH
W0

sLi

89

0O4

-. 4-

0t

o~. 41 a ~ CO

0r,(10) V'1 .0-
~0~04-4HQ. 1 U 1

I l 41 r~ OU Z r; (
4J 0 4 C; go a r-

1-4 0 4-" O) 4- W4 4

) 0 -m MI ~ 0l w
-r- 4 0 V 04 (a >1

4 ~4 4)4J 4 r-4 -En

X 4 -0 134 WOW H V - -
U U~~lU~ WO> 4 ()4

*rl 0 4 C12 W g0o

E-410

010

01 m 0
C4 1 E-1)

wE-4 U
r14 I i E-4 >4
0 1 E-4

I >1 E4z
of 0
0-41 00

HI 41 w

,I r4 H P
10 0E-4 0

Z E-4
Q) wi 4x w
0) E-4

P. 0 pq 0
U 4j) Q H i

:EA
.~ ~0 0 i4

Ei. $ E-4 -

'44 4.)4)' E4

o:~%3: 0 E-40
* ~0 uU

>0. i-I 0
0 0 0

4) 4) W) -
4 0 r-I U) 40

00 w) U 4 4 - -

91

0 04

-444--

13 -4 4
to C) j

0 4) U C)-

o 41 C) 4.) 0 H4

z -)0 4 .iP4 to a > 0
O-mP U 4~) E

w 40 4)4J 4J r404U 0i Q
I En a14P-4r-NUO:)UZ 4~

z 1 0 OL4 44 0 0 a q A
HI0 4J PC 0 P f- *r. $

) 00 >1 unp 4)4 A
*m1)P o .04) W4 9i0 Z

P1).r-4 4 WrW 0 W0-O Z

C14 4)0 0.q0) 0 a)4)04-r V

92

co

4-)

r0
co
i4-)

93Q

1 0 4

4-4
>1 0

U) 0 N- 4-)
>1* co Ln
(a c12 I

4- 1 LO Z

4-' 0O

U))

U) 04
fen 0

U) U)

04i d

93

OI,.

4-4.

00• -41 r

U) 4)- 41r

U) v-% 0

0 4-G 4J 00 c - a) A

I u .1 (a - M

-r-%P UQ) 1V U) E)
P 4 (D 4-J 4.1 r-i04 W Q)

ZI 04 4 40 0 0 "D1 U00 4-i 44 0 I4) rr-4

0 Ur-4 10 4)0 d (04JP
0 W0 >1 M $4 () - A

w 0 41)41 0 d (a > > m
U) Pr44 4)C4 04)W W00a)~ :D

4 000-40 c 0O V)4 74-q4 -

94

r41

HIo
U, 0

E-4,

44 4

a 0

fl1 41

:1 0

0 CA

01(4-4 4J)

.f- 0
UN

4J 4-4

95

1-4

4--i
.r44 .

U ~ (a0

o 4J 04r--4 Q 4-1

U 04-J () 41 0 w41 41ia
a) U -r-) U4JIUM)MUW

1-I004 Q 4-) -i 4 M a)
C~3 PL4 -4 -m M U0O:)0 Z 14

ZI 0 a4 4-Ic0IQ) rI (
HI 0 4J 10 0 .4 -r 9C
~~ ~ r-4I 0 04 w0CdmtU4)

U a) 0 0-H t) p a)) fZ A
.r~ WX4M90W 1 W0 a >(

96

H
E-

bI 0

01 a

Cz 1 4 4.)
H01 0)U

ol 0 4 00

:z 0 004

4)0
4.1

4-4 41 p.
0 0)

1 0 4 0 0

0 r 4-)

4. 41P 0
V4)

M 0944 0
4) 9 04.V

4) v)p

m40 IV
(L) 0 4-)
mr >0 0

0 M V)4
H- 44. -r
04 H V V W

97

0

r4

4-j 0 0 co co
t 4 4)3 O I 0oc

01 p~ 41 C11 1 0

HI 0 Q I 1 413
E-I 413 (CI C .)

4) 0

i- 0 0

z (* 4) CA
0)1 4.3 E-
U I rI~ 0

1 4. 3 0 a

0 1 9 41i
1 0 0 A 0

0I C. 0Z
to H H

HI 0
~-I~ 0 0)

0

98

co

co

4) 00

H 3: 0 9 > 0 000E-4 H 1 0 OO0I-E-4 E-4E-4

W9 19 09 *949

~ 0U) 4)
U) r-~ >1

0 10 9 0 HO kO0H I 0 0)> 4-)E- 1 H 1 4 r4JW 44 U rl4J g) 3: 0E-4 00 0 M EnU til -4.-1 0 u
134 t0 d))J() O 04 0

00~ 94J gr : H 4.i
01 -- 1 U J4J I - 014 W U UUI a0 w E-4 a)1 0) 000) z 9rPi N 0 4101 >rr 0

HI U) W 4 t4J

t3N (L) 4 1 1

0 000 40 C
4J41. 9I440 0000

'0i0 44ti ' t
4 41 044. 00

a) ~ ~~ ONzU)ty 0.r-NH 10 r, ()r

:j4) U)

W 4J :1

IV 0..

99

0r

0 4J C.) 4 4-3
U~~~ 0.-J) j0Q4J 0

~z~l Or-d~dJ) 41' H) U
04 4)

U) ~ U 0-0 f~ti00

HI0 41 Ou 4 : r
u Or41 a)O4(0 W4J-4

~W U Ur M0)0 >1 w. w~~~
z 1-r)1() -4JU04 (d a > Z

S 0 -r-)O $4 U 00 u) En
U) 0 P4a - - - n a

I t 0r4 4 -%id 0 0 0 Z

I 4 U r-4(d a4 a) 0 0) d V
I u Wo 1 tp p Q) 44

Irl a) 4(U9:a4a)a)100

rzz

~~E-4
rz~z

z 1 0 a)
r.i 4.)

0fl 1 In .

0 1 0 40)

UI Q 4

O) 0
4J 4)

0. 0)
$ 4J

A I w 1

P 00 -

:1 $4 X
4) 4-) (0

$4i 0944 0
w 9 0 41

4.) U 4

0 4 0
U) 0 U p-
o~ >1~ 0:4)4
0- 440 -4 .

101

000

0 -*4-
0

co-o c 4-)
U)~ 1 0)4 c o 0 3:O
W I k~. 41 11 0) 0
E-4I Aj N r-I

1~ 0 Q I I I 0L z
1 4.1 NN N %0) En

~4I .4-)
~I 0U M)
I 4.) 0 0) -

0 1 Va

E- I

0
0

0z

0

102

1 1

4-41 wrU 0 1o

co
co
I .-

I N' (1)1 413
1z~ 1 .4-i1

E-H1 1 coJ aI r0

'dl 0
'Hil1

41 po 1 :o>

0 (0 1 E- E4a
CI FO 041 Hn H ri HO

I E-4 44 r-4 Z H HH>

1I 4-4 0 (U
HI 0 00 00 *0 00 so 00 00 u

41) 41))
(0) 1-4

4

0 0
4) 04.0

1-i tn U) 44 W
0 P 0.0

4)) 0 0 4.)
4) rg4J 0 0 4 0

F.to Mts0 u 1) r::
41J

4J0W)4 4-44-)
0~0 (V$ 0(

1~03

-4-

q 4

0 090 ri 0

' I -o 4-i

04i4 9
z a) I qOr-diU0) d' 1 f

U) ~ 41 EnU0~U 0)
Z1 0 r. -IO-0
HI 41J' 4)- *r4J -I 0)4 J

z 10m 0 >1 N5- as z > A
w 0 -r4-)0 (1) 101 U)
:E U)W sa0 () 4) 4 0400 En 0

1 4 0 0 0d 0) -- r). r.0 Q4 9i

I X U Al 0 4) 010 34 J&

t 1))
0 J 0 0

0 041-H4 0 U). 4J 0 41 4)
10 0 0 0 04

k tSo' .

U): Q4Q) 0
m) 0OU 0

WU Ur- 0 4-)i

0 X0 0 A
o d (U0 4) U)Z

IU (U0 4J

0 to 0 (>)

0) 4C4-4)~ 4-) H

0O 34J
H- 0) 0

0r-4 0

>4 4 U 4.

4.)

105

0

4-))

(d 0
4.)1

4J.

.f-4

106

0O4

Q4.
r 0

o 4.) U i 4-)
z a).i 410)-i- 0)

Gi~~ C04-JC 4-)

41$.U0 U)~ Ui (L)
0 ~ 4.4J 0r-Q 4) 0)-

U 0 41 4) 4 0)Z 4J Q
ZI 0 *Hn MUCM

o 1J' O4 -r--% 0)04J 0 a

kI- 0 a4 (1)4 WW ZJr- 0 a a
I U 04J 0 M d -m U000:)I) Z

z a 4 W.JO) r~-I

U WOOHWW.P 04 Q)4 V
'MWP 04WW

w 0 4 4J (d 1 >07

APPENDIX B: SAMPLE CONSULTATION

A sample consultation is run in SOFTMAN by choosing the

"Consult" option from the main menu and entering the project

name. Then, the user selects the coding stage and provides

numeric values for the five input development parameters.

SOFTMAN calculates metric values and responds with a bar menu

listing detected anomalies.

In some cases, the user can analyze each anomaly. By making

a selection from the menu, SOFTMAN will suggest solutions based

on the type of anomaly. In some cases, the user is asked to

revise initial project parameters. When the consultation is

finished, it can be saved for later viewing by choosing the

"Save" option.

109

*41

o ~ ~ to 0)~ CSJ r
o 04-iW 4 0- 4 - 0)

4-J4)UW U

u 41O(1) 4 1 .J0 4) 4 0)
4) 0 -n 4OQ~i *0 w w

HmI4 0 4 O 4 r~i J
O-n U 4) V0 >1 M- W~~

Ci) ~-0 144 VF4 Q 04 a

a4 ~ 44-)004)4J I4 A

'm k 14 WOO WE WQr- V

110

413

00

P4.

E-E-4

z
H I H d

2n1 4) r. 4
0 1 0 -% 0
0 1 0 V 4)

$~4 004

x
0) 0

r. 0-
44 4 $4

0 04)

4 W 4J 0

* 44J
4) O$'4 0 i

0 $4 0 $4.X

0 V 04
$4 0

0) z 0V

9 0 W 4 4.

0 r H4 4)

4) $4 4 1

440

0%

E-4 H 4>

04 0

~~~ In ou
4- >- 44) Hr)4r

0 r4j 0) r, *.i H.
rI to... .0q 0) Q)

rn 1 0 0 OwC. P -

C) k tT p k 0 0 v E
HI - 04 94- IS -H 0 () w

E 1 4) *r >144 0 J 00 0
WJ)I C)N04$ 0 p4- 00 u) 4J 4- n
01 4 4 M4 0 V 4) 44 t44 -4) 0 A

914.r 04.04 0A 4j -> 0 -U4- u z
4-1C) 4JF -04 - 0 jr- z~

(0 U) > 4 0 ,4J 00-4 4J4 . :
.9I~4-0 4 C ) 4 0)C (04i)U H
4lO 0 10 (d0I ( VF )-

Wk,0 W ) 44J4 4j*.4 Z
0114 4.J~r 0~I 0 *- 44r-40

0 0 U co (o- 0~ 4.

00 r4 >4 $4 0
:44.1 04 0 ~'04,4

0(I s 0ot A i 4 - )- 0 4J
zo U)H 0 4J V.) C

0 4 .H 0 to to -4

U)

112



SC

0 a~4

00 0

0~~ 1 IL .- qU4 0
4~ O 1*r 4 0 4z

E-4 fit ' a 0-4 0)H
0O 0U' Or t

4J -H 0 0
0~ 00(1 U ) HE-

Zi 0)0 >4r-f 0z

0 (oj- R~

01 WO4) 0 i.-4

S4 44 H-

113



H) W Id. 4)
4 ) V0
V . (a () 9 )

.0d-c *r-- t 4

41 t 0 0):

'0 OVC4
4i) I AC0

9:~ 41Id- A4
0. -4. i 4 >i
.W0 : o 4 I 41V 0 V V

00.0 FAU U)

o 0 o 0 r 0
.) >1>1(

0'440 0 41

00 k.

w 04 O 0 4 0

4.) 04 41)

.0 0 *0 k)
H1 4l U) 0

w 4 V M

3r 0 H & 4)c

0).E~~ 0

0 4)04- r-4 0 -)

l 0 0 0 $4 4
0 k0.00 004.

114



4 t3

41~t
0

C0)

~.0 V

E-4I
I(%. 0

04I 4-4
z0 4 0

HI 0~
ZI (01 4 0 H 44I
01 .0 1 (n
HI C A

E-44 E- 04

0 4J 4U r.

0 1 0 40U
01 4 UM

10 p

0 ti ti)O0UE
p4. -ip ti

U) 0

(a M -44J04

004

115



(1 r- 0 r

r-I 44U4)

o 41

00 r.0

04-

44~ 0 ~ ~ ~ Z
S.0 4-30

$4 (1).~

M~ M p 04 T3 0
14 H ) 4S 14

9 00 0 0 0U pf

00r H-HO
0 S-4l .4 . 4 4

124 4) Ul E-4 4Q

S-rU a)4
oH tnt 41c

4JS- t4-H() 4 d

-r- P00 M c00

W 0 -r -,116



0 4to o

E-40 1 $

z) 10)04

zI (1 4) 0 4

H u 0

E41 41 HA$

z~ 0

(044(

010 t0

4$ MU)
044-) a0)

>1 ) U) 0.

0 4

117



04-4 in

to 0 Q

0 U) 40

*rz 0)

C12 0)J4)4

0' U 002to P0
H 4)tok

E-4 .Q w 0 E-40
HI 010 Q 0 4

E- 0)4. 0w Z 0
44I4 r4-i Hm-

0p 00 A)q 4

WV t4 ro0 rZ 0

HI 1 4 0 WV r-

4-1~ r-4

0) 0 E-1U
4J) 4Jto 0d U

Ut .0 OOH V F
t 0 0

> r4 4) 4

00 O

4JVQ * 118



oo

134.
00

00

4410

o: (0 (0 .. 1 0 I

P41 ~4-4 3 r
zI 0 ~i) 0

0 0 04i4z Ir H 44

0U ) 4J 4)

00UI

HZI >- 04 a A

0-41 00 it E4 U4
l<1, 04 r 4 0)

to4j a) 0 r
4J' 04M-Ei

WI4 0 4J ~ 0

0 tp 0 4*H

4.3 .

0 4

119



o I~O •I:-o I :u.4- tp
0 10 a)0

30 .4."E

r40 0I 4)O 0 V r

U) 4 0 lO
00 0r- 0 r-4

0 - 00 0
H-4I U4 Eld >

:D I ON 4) E) 0Z 0
04 0 44 Z 44 -4 H4-4-

Hk 0 U)Qr. A(
z 0(1 ucoA F) pH-U 4 4

0- 0 F-4 41 M pZ
E4 4 k r , 0 w V

z U 4 0 )I
03 (0 r, 4 4J C

4-0iDt 4) .4 M-
.044 E6 4 k

U)4 . 9 0J >

0 (

120



o
H 4J)

04 C
ci 0

U) 1 4-4

z t4 0 0

4-) W 0
z 4) 0 -

0I 00 H -
HI *-14J 0 A
H-4 4IJ Hi E-
E' . 10 4)

E-fI -%.q ) 4

M01 c i 40 a 0

0I 1.. U10))
PW 0 ~
41) 4 )g

4) I 0

M *r4 04

00

121



0 m4~4-

E41 41
Cl JI 0 O 0

I 0

CJ) Q) 01r
H)I > (1 4

EI ON '

0-0 4 0 lz a)
E- 41 >e ()0 dr U)

0 X >40 E-4 >:2

I 0 r'I >12:0r.

:J -0J 0 >, 0 - J (
(1)4~ '0d4-) -A0PU:

wI U) 0tp > 0 0
0 1 0 4 . AE-40 4)P A
P4 0 0 0) 0'4J 4 S4

1Z~ 0d P - 03
01 0 ) 010 0 ~04- E-

EI E-UQ) 4 04O r CiU(a:

1 04 E4J04U

122



10* z

>0

>0 

00

41 0 4

*4 4 z U)
4 J 4 iH

a) fa 4-

0 (0 9 w
,oH 00-

4) 0
Q) 04 4J

\0 0 10 40

04

S.1 00 0
0 $4 0

> >1

*f4 0

00

123



z

4.) es0

k.C 4J)

01 r-40 4) k

A19 4 4) rq
z1 0 i.0 W:4

E-4 *4)4 . h0

~4I 4)4) 0to)4
to 0 4 H 3

9 1 .0 0 4.) *v4 In

.4- ~ 4) W4 V 4

4 )(- 0 4) :.)
rz> r4 k5 4) 4.

r-4 ~ 5- 3)v c V r -

0W~ 4) 01 4 (

0 ~ ~ L 0 r g

v 41 0 ) Ea 124



0z

4Jf 0) 4)4

*d~4J
01 4 001 0

0 -40 g4.)
p 4Jl WU

C01 04 9
pq 1 4 4) U

0 1 d4-1r-f a * q -4 c) 0
4J P a) M 4 J (00

0 0E ri- H
I W4-40 (0 0 r *-4

01r-4 4)J(0 4j) *l U) EA4
0 *)(1)04 (d > 0) z
V) to UI 4)w

01 0-4 14 41 4-)4-O 0U) ) 0 c 0
0 14- 04W

(0 41 p 4J~ . 4-) 0
g4 0) (U 1 Z4

1. >4 Q)
NI H 04c

9'(1 P 4 0

0 M 0 0 0 w
.V-1 0 H4

r. 4)OEC r 0 r-

125



4J

H-4 4J
U)~ I U) 0
U) I > 0) 4J

0I 0

O 0 0a ct a)
Hi 4i 0 0 d, 4 (

to ~4)O 

Z 1 0 4J O 4) '0 J
041 11U ti*.l -4 V r .- A~I 0 0 ME400

1 0s 0H0 P
031T Z 0 4) 4j~J W

Ir 0U)MN *0 O> H fxHI -40A Wu H 4U U~ 60v

126



41

o

0 p

co 44

H44

ou
H44.

~ 9o

411

~..0

k.4 - U
P 0 u)

(a U) W)
0~ 0. W

4- M -

M 0 u -4

-A r-4@> tO 4

4 .413 H-4p
E-4*- 0404



004

E--4

1 ) 1 -
C)I >

~I -q V
E-4 I J

1 0 409a
0J) 0>E >

HI 4 9 d 0/
CAI -'.4 to 0U) a

E1 0 .4 >z0c4
I 0 0 -P ~ -4 00-) : 5

M-4 4.1 t.i 0 -'4 0
0 1 0 9 o-f E4 

C4 1 00 4) 4J F ) rO 4 0
(44 0 -H >04 H0

W Ord 0 -'041 &4
0 ) WO ~0 kn90 40

I0f1 0 k p -04 0 A riC
4) 0n 00-)y0V

P4 )U.4iq-

I U ~ )-IE-~C128



Q)

>4

04) ) L
t~ot -r4
tv 0.0.0
k 4U V 4 -J
0) 00
> 44 0

14 0 V

4) 0

c -- 4H.1

4*1-4 V In

.00 La0 H F

- 4 J4  0

ok A
) 04) w

oO 14 4 J 0
V 0)4 P 4-)

oo -J4-
o 0 W$U-4

0\ lz~4 .rr4 4

0 m 10

H) H 4

0 :3

> >1

0

S 4
0 129



0 :4

C4-

E-41 4-)

CO, U4.

I 0

> Wr. 4

0E-4E- k

0 ,1) . 0 r.E-4 1 >) e0 0) -4 (A

0I 0 '>i:1E4 >
1I 0 Vr- ,Z0E9i 1~ 9

~I :S r, 40 010 4 t
01 W J- 0 E-'-440~ 0
~I 0A (0)4- r > 0 -0

0 IA 0 . r4 E-4 0d A
E9 1 0 ~4~ U' VJi ) d

• 0 0 E4 0 o ,-

1 30



0
4, z

: -- ----

n3En

4)

4.,4

4- 4J

~0 (
44J-

p(1) U-N-0

-,r4 OW
0 0z ~~ 41i

o-o o-,d o-

oo H

oa k 0V

0 0

oj * to4ON.3

0 0 )Moq

) 00(
H, H4 44 4

0 E- P

00

H 0

C-4 4.)

00

131



E--44-

01 Q) 1

I >) r1

0I~ 4) 4 r

E-4 4 -

00 >iOE-4 >

1 0i CuI U)40 IZ4
w/I 1 0.0 41 U0 :3 0) (

Q)IV- 0 E-4 P4 O r-;

~I U) 4)tJp>O0 C 00
0 1 0 4 9-i E-4 4) kC A
9 1 0 (W4 4J 0 'dPCJ4Z

P4I Ut -4-1 ur
rl4I 0 O k P. E-4

041 0) w'dO$-004- E-

C/Il rik014 r
HIf E&4 04w-iu(a:

132



0

* >4

0) 4-' 4-4
p -.r 0

b' 4-) Q

41 0 4)
$eHUN

41 3 0 u

4J E-4-

0Oi J 44.)-
4,a to) E 0

U 411 0

4) 4. 0 .

-4 4 4C

0\ V~4. 00

0 adAl>11
0- t4 r-4> 414

H WU 4.4.
4) co 9 t

o A ~r-4 (o0

HH

0 0

1333



000
4~4-

Q)l (

E-4~ 4

cI 0 0) 9:0 4J
1-1 r) 0 U0ti U

E-4~E $4
1 0 4) A

0l 0 >1 -4 > 4

01 0 1-4 >1 0 94-.)
1 04-) 0 : A4J (

I M )U >0 O
0 41 0 .0 -,1E-O4 Q.0
0x1 0 U 0.4J 0Wr4J r

UI 0 E40 ; :

134



01$4

0 0
40

C))

ON 00

4-r 01

0 0

14zU

00

U) * 4J

4)4-)

A 00
o E-00 V1

0 E400
in

66 1

0135



00

too

4.)-

I 4

E-' 4J .
I o) 0
1 Q) >1 .-4

CI > 0 4.

EI *-4 04t -
0 0) 0 0

E-4I 4J) >. 0 0 1 tn
00 >4 E-4 >

WO) (a 00MU U) 0)
1l 0 rEf >l1  O 4 ls

#0~ ~4J 0~- E-41 :
~I M 4 0> 0 OjO0

0 1 0 4 9E40- &4() A
Ix 1 0 W0V WO 4J v

~I .r 0 k -4 0 (a Is

01 0 w -I 0 04J E-

E-iI (d Hup4zIuOum V
cI 0 U) O

136



00

E4

H z 0 4.

> In

E-4 4

to H

H E- 4t

H-4Z ::4-
H H CEn

p< 0
occ 0

0 a 44
>4 0

Wz 41i
c 44

0

>1

137



0

.138



APPENDIX C: GLOSSARY OF RELEVANT TERMS

A

Abstract Data Types Data structure or type
whose implementation is
transparent to the user;
defined by a set of
operations that can be
performed on it.

AIRMICS The Army Institute for
Research in Management
Information, Communications
and Computer Science, Atlanta,
Georgia.

Arrowsmith-P A software management project
done as a Masters thesis, the
University of Maryland, under
Dr. V. Basili.

C

Coding Phase The SDLC phase in which the
design is converted to
computer programs.

Coding Stage (SOFTMAN) The coding phase is generally
divided into early, middle,
and late stages.

D

Data Flow Diagrams Software design representation
schemes based on data flow
between the different modules.

Design Phase The SDLC phase in which the
high-level design of the
system is developed.

Dynamic Metrics Metrics that are continually
updated.

139



Environment-Dependent Data Data determined by the
software and hardware
configuration; used to drive
the Softman system.

Expert System Development Tool Software which helps in
building expert systems by
providing intelligent editors,
knowledge representation
facilities, database links,
etc.

Flowcharts Software design representation
mechanisms based on the
program's logic flow.

Fourth Generation Languages Non-procedural languages which
have procedural components
(e.g., data structures and
procedures) incorporated, thus
relieving the user of such
details.

Frame A collection of slots which
represent events, objects, and
their attributes.

Frame-Based Approach A knowledge-based system
wherein information is stored
as frames.

Functional Modules Distinct, and independent
routines; each performing a
separate function (e.g.,
report generator and input
output routine).

GLITTER Research project at the
University of Oregon, Eugene;
based on TI.

140



IiI

HEURISTICS Rules-of-thumb that are used
for decision making by
intelligent systems.

HIPO Charts Hierarchial Input/Output
Diagrams; data flow diagrams.

How and Why Expert system facilities
commonly used to explain the
system's line of reasoning.

Implementation and Verification The SDLC phase in which the
Phase system is put on-line and

extensively tested.

Inference Engine Component of an expert system
architecture which performs
the match, select, and execute
cycle.

Input Parameters Quantitative measurements
about software characteristics
(e.g., number of lines of code
and number of errors).

Intelligence/Compiler An expert system development
tool that is marketed by
IntelligenceWare, Los Angeles,
California.

KBPA Knowledge-Based Programming
Assistant, University of
Illinois, at Urbana-Champaign.

KBSA Knowledge-Based Software
Assistant, Rome Air
Development Center, Rome, New
York.

141



Maintenance Phase The SDLC phase in which the
software is continuously
upgraded and modified to meet
user needs and to correct bugs
which surface during usage.

Method (GLITTER) A formal mechanism for
representing decision-making
strategies in GLITTER.

Metric A quantitative software
measure used to compare Actual
and Optimal values of code
characteristics (e.g., errors
and lines of code).

Output Parameters SOFTMAN's qualitative
decisions reqarding. the
project (e.g., time schedule
and productivity).

PA Programmer's Apprentice, MIT.

Plan Calculus A method used by PA to
represent programs and
programming knowledge.

Project Parameters Estimates made by a manager
about a particular project
when it is first run in
SOFTMAN.

Q

Query Language Language used to obtain
information from a database.

142



RADC Rome Air Development Center,
Rome, New York.

Prototyping Software development process
wherein the program is
interatively refined until it
meets complete specifications.

Requirements Phase The first phase of the SDLC in
which system requirements are
determined at a very high
level.

Rule-Based Approach A knowledge-based system
wherein information is stored
as If-Then structures.

SDLC Software Development Life
Cycle.

Selection-Rule (GLITTER) Mechanism used in GLITTER to
resolve conflicts between two
goals which are simultaneously
ready for firing.

Softman The Software Manager's
Apprentice; project currently
underway on the Oak Ridge
Reservation.

Software Crisis Phenomenon caused by the
failure of conventional
software development methods
to meet software needs.

Software Development Life Process of developing a
Cycle software system from

conception through
implementation and
maintenance.

Software Management Process of co-ordinating and
controlling a software
development team's activities
in terms of budget, user
needs, time constraints, etc.

143



Specification Languages VHLLs which allow program
expression in terms of
specifications; progressively
refining them to lower
abstraction levels.

Specifications Phase The SDLC phase in which
requirements are expressed in
a formal language.

Temporal Changes Changes over time.

Transformational Implementation Software devclopment paradigm
(TI) which starts with a high-level

specification of the program
and applies various
transformations until the
program is generated.

V

VHLL Very High Level Language.

W

Waterfall Method Traditional method of
developing software; entails
sequential stages.

144


